all amo
jcs, a very S
mg:m a knowledge of vectors:
-'180,.1 mdfonheSAlNT integral o
k= the appendix and even {1 e
e it ACM'’s CS-2 cours
of programming abilities, the
v i;rom::gui:r;noduccd as a useful notﬂu’cfn for descr
sf,ﬂ;’:ﬁ If you want to do more Prolog than this srln;] o
l]g:trlldiﬁonﬁ chapter on Prolog available free on the n
Ir':n‘l s use Lisp instead, there is a Lisp_ chapter thexe\u,s
symbos mlic programming is important to give students the |
. If you want them to do a lot of such programmi
g;:ﬁ 1, start with Section 4.2 and then go on to either th
then start at Chapter 1. " y
mﬂw bookis organized in a manner in which I think the

feeling for the principles of AL (I like to think that the bool
reviewers have agreed with this assertion and one has di:
the applications of the basic principles are demonstrated by
programs in detal, To a large extent, people learn by seeing
generalizing from them (a case-based approach).

I recommend that you read all the exercises even i)
formal way. I feel this is worthwhile since many exercises
in the text. Some of them are worth debating in class. Some
any programming, but many of them are programs. Some of tf
in general purpose languages like Pascal, C, or Fortran.
cannot simply go to a chapter and assign exercises 1-5 one
That would be altogether too much work for a student. Ir
exercise and choose only those that are appropriate for your
are umx orhard as they look, except some long or hard >
huveMwumngs attached to them,

0re material is avajlahle online jj i 1
DOSIMS-Mndows and an outline andﬂ::udlpg tn i
wﬂlhllinorﬁnqmtlyaskm uesti) o £a
and i inwih e 2 te¢ questions. If there i
itonlne, For i PF“PMV; of this book, please let
ne information, gee my Pattern

" huy://wwmcom[_ v
or!endmemumﬂumeat:]"Ji

drt@mes com,

ial Intelligenq
ligence

program that can learn to do these V"“"Icm\

4 fairly small
break the text down into

problems and let it f de
pairs. “Matt has.” “has 5

sy 10 create

In fact, itis ed

- airs of wop,
Give the program some sample "

5 cents,” “cents

For the first problem above, you get the L e o
forth. sciate addition with €a¢ h of these pairs. EXT i £ 10 many sye

so forth. ate a { : U :
blems, and then test it with some of the problems you have trained it on, as wel] 4 o

roblems, - o

. how effective 1L1S.

some unknown ones. and see

Whether you program this
the techniques that have heen suggested
Consider whether or not you could use

lems like:

problem or not, you can still evaluate the effectivenegy of
as well as suggest more techniques that may work.
these techniques or similar ones (o do harder pmh.

John went to the store and decided to buy 4 pieces of candy at 10 cents cach,
He gave the clerk 50 cents. How much change should he receive?

1.4. Rather than trying to classify arithmetic word problems you may want to classify
Usenet news articles on two or more topics. It is probably best to choose articles l'mn'1
two very different newsgroups. After you train your program on the two classes. give the
program some additional articles to see how well it classifies them.

1.5, For the network in Figure 1.5, show that when any two binary digits are given (o the
two inputunits the correct value (to within 0.1) of the exclusive-or of the two inputs appears

on the output unit. Compute by hand and give the hidden unit values as well.

L6. If weusea neural network where output units have real values for the threshold values
and weights, show the networks corresponding to these two rules: i

if @ or b then ¢
if (a or b) and not ¢ then d

L7 Is istic search suggested fc

i h:lzli:::ll:ﬁs:;nh .suhggmed for crossing the river on rocks a realistic model of
peo a path across the river i /a fog? If i
it e river if there was no fog? If it is not. how do

1.8. For some extra background on Al read and sumr

articles, all found in i marize one or more of the following

Winter, 1988 issue of Daedalus:

“One Al or Many?"

“One lany?" by Seymour Paper

.‘Makmg aMindvs. Modeling a Bn?in“‘
Natural and Artificig] |

by Stuart and Hubert Dreyfi
ntelligence” by R ert Dreyfus,
uch Ado About Noting” by ilary Py~

“When Phj
n Philosophers Encounter Artificial Intelligence”

19, Stuart ang Hubert
Sl i oy

by Daniel C. Dennett.

FES S are two itics sl
Smin the book inyg s A;:;;d' Critics of artificial inte]]j gence and they give
ine [28]. Read this book and Summarize their

not you g :
rse.) 8ree with them ang why. (A good due date

their

criticisms and then
state wheth,
Wwould be near the eng oftheco:mr

ipter 2

Pattern Recognition |

In this chapter w ¢ will be examining algorithms, especially neural networking algorithms,
that can be used for pattern recognition. These ulguri(hm; will use the neural and associ-

ationist principles discussed in the first chapter. To illustrate the use of the principles we

will start by looking at programs that can recognize letters of the alphabet, then look at a
method for recognizing words. and finally show how the same principles are involved in
higher-level thoughtas well. One of the results of this study will be that recognizing even
simple patterns like letters requires more knowledge about the world than you might at
first suspect is necessary. The problems encountered with recognizing letters spill over to
higher-level cognitive activities such as understanding natural language and pose difficul-
ties for all Al programs.

2.1 A Simple Pattern Recognition Algorithm

Itis easy to apply the pattern recognition ideas described in the first chapter to the recog-
nition of alphabetic characters or other such small patterns. Consider the letter E, shown
in Figure 2.1 as a 21 « 21 matrix consisting of ones and zeros. To aid in identifying the
pattern, the area the pattern occupies is also divided into the nine subareas shown in the
figure. The solution to recognizing such a pattern is to break it down into its component
parts and then form an association between each part and the answer. Let the component
parts be the small vertical, horizontal, and diagonal line segments shown in Figure 2.2 and
then make a listing of which of these subpatterns are present in each of the nine regions of
the unknown pattern. The characteristics of three letters, E, F, and H are listed in a matrix
in Figure 2.3. A *1" under a subpatternin a particular region indicates that that subpattern is
present in the region and a ‘0’ means it is not there. Each row of the matrix can be regarded
as a prototype point that represents the ideal characteristics of each letter. 3

When we get an unknown pattern we will also list the subpatterns that are present in it
as a column vector, 7. For the letter E in Figure 2.1, would be:

7= (1,1,00.0.1,0,00.1.0,0.1.1.0,00.1.0.0.0.1.00.L.1 10,0.0,1.0,0.0,1,0.0).

ed horizontally for convenience). If we name the matrix of Figure 2.3,

(where display
-\, then if we form the product, i
b=AZ

Pattern Recognit
nl 2.1 A Simple Pattern Recognition Al

‘;‘ 1 2 3 4 P e
1 =N\ = N

-
B:

: By

I

0
i
0]

pattern xsF
patternis H: |

Sle
=

(] Figure 2.3: The above matrix is derived simply by |
[0jo]ojoj0 ; feature (vertical line segment, horizontal line segment, and two ¢

0] 0 : nine regions of a pattern. When you multiply this matrix.
| 0 in the unknown picture, you get a vector that]wgme
0 4 This is basically the algorithm of Wa isler in the la
0 4 it gives the e (9) for an Eand an F. nan F s pr

o iy
ones. The area is divided into nine subareas, by matrix multiplication, the ith row
R ¢ the ith letter. For the letter E there wi
Motk b nine votes and H will have six, so t
s scores you get from M&a{[mﬁ@
D y an ideal letter Hareniaq
cad proposed by Walker a
words o Mf

W 1 il WM t

mmuf

P——

5 O
Ly SR AR A

! 5 2 4
R =N N

letter:
pattern is E:
pattern is F:
pattern is H:

1.000 0.667 0.000
0.750 1.000 0.333
0.250 0.333 1.000

Figure 2.4: The above matrix works better than the previous one

Notice too. that the pattern in Figure 2.1 can be moved around some within the 21 < 21
matrix and the algorithm still gives the same set of 36 values and therefore will get the
same answer.

This algorithm can also be presented as a neural algorithm. A diagram of the algorithm
as a neural network is shown in Figure This network has 36 nodes in the botiom layer.
one for each of the 36 pattern features. and 3 units for the possible answers. E.F.and H in
the output layer. The weights come from the values found in the matrix 1. in ure 2.4.
The output values are computed in the standard neural way. where the value of each output
unit. oy is computed as follows:

o= Y wiki;

J=1,36

and where the i; are the 36 input values and w ;. is the weight on the connection between
input unit j and output unit k. The portion of the algorithm where you first have (o scarch
for the presence or absence of a feature in the unknown is still not ‘neural.” however. in the
next section we will show how this too can be organized as a neural networking algorithm.
The change will be that more layers can be added below the input layer in Figure 2.5 to
find the values for the 36 input units. 1

in the last section was a simple illustration of how a program can recognize
er, there have been many more sophisticated programs designed to recog-
ﬁlhermsﬁsy:nbols. One recent important set of experiments has been done
; “rs pmgm;:nmwa[s the Cognitron [41]. This was followed by later
Neocognitron 43,44, 45,46, 47). Each version of the Neocog-

tails. In this section we will mention s P
Inth 4 ome of the key features
out studying its weight adjusting algorithm. {

Figure I\ m-v;u.ﬂ H)lll’l‘[u’uldl\m\ of the algorithm. The hottom layer contains nodes that represent
the features tound in the unknown letter. Each node will then be 1 or 0 depending on whether the
T contains three nodes for the three letters to be recognized.
is the answer. The fines connecting nodes in the two layers contain

feature was present or not. The top la
Whichever one lights up brightest
the weights shown in Figure 2.4

2.2.1 Detecting Short Lines

In the last \.ccliun we assumed that the short line segments were found by a very conven-
tional algorithm. Finding short line segments in a figure is actually quite easy to do neurally
but it requires a large number of neurons and interconnections. First, suppose the charac-
ters we have to identify are again E. F. and H, and again they are contained in a 21 « 21
matrix of zeros and ones as in Figure 2.6. The network we will use will have an input
layer. two layers called the 5 and " layers (following Neocognitron terminology). and an
output layer that gives the identity of the pattern. This network is shown in Figure 2.7 and
it is much smaller than a typical Neocognitron network. The typical Neocognitron network
uses many more layers and we will look at a larger network later, but for now the network
in Figure 2.7 will suffice.

In this network we will have it look for the four short line segments shown in Figure 2.8.
To do this there will be four sets of S layer neurons, one set dedicated to finding each of
the four types of line segments. Each set is represented by a square matrix of neurons as
shown in Figure 2.7. Each neuron in each of the four sets connects (o the 9 neurons in a
3 3area of the input matrix just beneath it. Figure 2.9 shows the area of the input matrix
that one S level neuron connects to. In this figure the set of 5 level neurons is looking for
the small horizontal line pattern, as a set of three black squares in the middle lineofa3 < 3
matrix. In the Neocognitron the interconnection weights are trained to turn on when the):
see these different line segments, but here let us suppose that they are handwired and an .5
layer cell turns on when it finds the correct pattern below it. 1

When a picture is given to the network. all the S layer cells look for their respective
patterns at every possible location. Now the (" layer cells look at the gel]s on the S layer.
Suppose, as in the algorithm in Section 2.1, {hat we want to flag the existence of cac.h type
of line segment in each of the nine areas of the input matrix so that we end up with the
vector of 36 values we used in that algorithm. Let each of the (" cells connect [0 & 7 x17
area of the § level matrices and have a (' cell turn on if it receives any activation from one
or more of the 49 S cells it connects to. For instance, in Figure 2.9 the Ceellat the bottom
and center of the picture turns on because at least one.of its S cells is on. Notice
that the whole pattern on the input matrix could be shifted several rows or columns : :

B t s evuynuon |

R

[
[
|

where black squares are a | and white squares are a ().
el output layer

=50 1L

C' layer
3 %3

S layer
21 x 21 x4

R Baratc

Mt b1 i)
B p Ut laycrita

o 21 2

B

the same C cell will still turn on, In the ¢ ical N b
pattern is taken into account over many Ia;,}:g rmmﬁw miuwfw&

2.2.2. A Typical Neocognitron o

Figures 2.10 and 2.11 give the outlines of o i 1431

recognize the digits 0 through 9. Tt has fourn;?m?;mm

for a total of nine layers. The S layer looks for the twelve different su

in Figure 2.12 that represent the patterns you get from horizontal, ve

lines and from the four lines in Figure 2.13. Notice that these Tatter four lin

Figure 2,13 give rise to cight different patterns that the MMMMM

the twelve patterns of Figure 2.12 only represent lines at eight B

only has to have cight sets of neurons, not twelve, Each of the Sﬁmwﬂd‘

the rightin Figure 2.12 will map into one (*,-layer cell. Each of the cight sets

neurons is H 11 and these cells turn on when any of the &WWN

are on. This arrangement is used to take into account Wﬁa

within the input matrix. Figure 211 shows a vertical slice of the

in one layer connect o the previous layer. Most of thwm ns ¢

of the 5 layer while the €'y neurons. mwmwmmm
Atthe S5 and € layers the network looks for more

from the short line segments detected by the W

features that this pair of layers looks for. /

can be mapped into just 22 categories just as it

into just eight categories. Again, wm

figures, the 11 « 11 array in the S layer |
At the Sy and (5 layers sﬁﬂm?

ure 2.15. i

223 Traiing m

thm
zme

Pattern Recognition |

19x19

S (Eh
input E [

19x19x12 11xl1x8 11x11x38 Tx7x
Figure 2.10: The nine layers of one Neocognitron:
through 9. The input layeris 19 < 19,
layer €', Layer S5 looks for 38 fe: ;
32 features that map into 30 in the C'; layer.
appears on layer C'y. S-layer neurons must sc

b
[= esent lines
; g s search for and they represent
e riaay Sl.::)cl::'::s from a line of slopg 1/2. the fourth !
es. The third pair from lhedl" ixth pairs come from lines with slopes 2 and 1
g e ﬁﬁ&:; r:l;resenl only eight lines. therefore only eight
¢ are twelve patterns,]

pattern Recognition |

r
I

&

Y 2 that give rise (o the four paiss of
slope 172,112, 2. and -

o

ETIHE R BT will be Loolking for. Most
but some of them (not shown) are
i

Al k

3.3 Recognizing Words

reacher the Neocognitron can simpl: i
v be given only input
and not any of the features shown in

classify them correctly, However, Fukushimarcpmu rain
much much longer than raining with x te: g

distorted patterns when it is trained by a teacher.

2.2.4 Some Results

Figure 2.17 shows some of the distmeddigilst!mtbe]ﬁf

Figures2.12, 214, and 215 and

mmmm% ctter

An inieresting feature in the 1987 version of the Neocognitron is that it can |
fy W L i J

picture containing more than one. character and first identif

In this scheme one character emerges as dominant and ll];ﬁem

in identifying this character become active and inhibit the pathways needed to
pathways can be inhibited

other characters. At the flip of a switch these acti

other pathways will find another character in the input. Figure 2.18

the Neocognitron doing this. While the Neocognitron was developed
recognition. Fukushima expects that it could easily be modified 0

as well.

2.3 Recognizing Words

Various pattern recognition programs can L 3
individual letters and digits. Among people, badly distorted
can casily be misinterpreted. but people rarely ¢ I« st
the characters are usually seen in context and cc

mation necessary to identify the pattern.

processing systems and it can be
programs reveals that to do an accurate job

ram know quite a lot about the world. The:

Interactive Activation Model of)

t0.do vi
do speech

Patiern Recognition \ :

2.2 Recognizing Words

Figure 2.18: A pattern containing 1, 2, and
cells. The row below shows another layer
to particular figures. First, the network “see:
network. The “4” pattern is inhibited anc
flipped again and now the network sees the |

the text.

Pattern "'°°!n

p 1o be. To really catch mistakey You

h ceeee word level recognizers

oo letter level recognizers

s :
o line segment detectors
ors for word recognition.
PR
i % | it
b

23 Words

may have oward @ particular
dots as forming a curved or
expectations is referred o as
flows both from the bottom

@%-

L AOOO0 OO 010
OOOOO 56 12345675 9I100112031415]g
ion network. The words to recognize are AM and AN i g,
o,r;l;sjﬁqn 1 (Al), M in position 2 (M2) and N in Position 2
e process the middle and upper layer nodes will be (), Th
r A on the left and for M on the right. The connectio,
Jinks and the other connections are activation links, y

winner. To produce top-down activation ang

Jletter nodes Al and M2 and inhibits N2, The
)\ - input-feature-level nodes activate
they are not part of. These connecti

and the inhibition links will all h
k the input and used it to ac
tput layer. Now the actiy

o@oomhc\o@q, 1'E

2.3 Recognizing Words

where w; ; is the value of the connecti

7 l ectio i de
level of node i at time ¢. To compute l:hi::r:ﬁl‘l:g;;tonods
greater _than 1.0 then set neti(t) to 1.0 and if itis less vt:me =
is positive then the new value of the node at time ¢ + At av\?ﬂl

(¢ + At) = a;(t) + net i (010 = a;(1),
while if netj is negative the new value of the node will be:
ai(t + At) = aj(t) + net; ()aj(t).

Notice, how. if the value of a node is cloge 10 1.0 say 0.9, and if the input is I

the new value of the node will not go over 1.0: '

Pattern Recognltion]

J
| WO
\XX)
0[0/0)0)0

10111213141516
30 cycles has stabilized and AM is clearly the

2.3 Recognizing Words

180
0.9 Al
0.8 4
=
065
0.5
0.4+
0.3 4
0.2
(ks
0.0
0 10 20 30 40 50 6p 79
Figure 2.28: In this run. feature number 3 (f3) was missing from the M but

the word AM anyway. As M is recognized, top-down activation
could say that it is trying to “see” the missing feature, it

M2

The range of values that nodes could take on was from
values for the words, called the resting values, were between
have resting values greater than the resting values for u;
common words is used because, in experiments on
briefly flashed on a screen the human subjects

relatively common and the word TEEM is
on the screen for a very short period of
these considerations in mind, the formula

iteration 7, is:

vation value of an inhibitory nej
net;(t) is positive, we calculate

A

Pattern g
°°°snmqm

n on the right o_f this formula is used to make the activyy;,
th time, so that if, for instance. the inputs were g mma‘:jon Value of
to their resting values. This becomes important for b Off’ the ‘wde:
that we will not actually be concerned with. CEMain agpeg of
for the model were determined by repeating the ex
results consistent with the results

e Perimentg ¢
obtained unti
found were: tes A

Uman e)q;,em.nm“s

M. the maximum value of a node 1.0
¥ m,,ﬁe minimum value of a node -0.20
-letter excitation 0. 605
-letter in 6.15
rd 0.07
0.04
0.21

tters, and so forth are all the
%.Wﬁighfs for every individual

2.4 Expanding the Pattern Recognition Hlararchyr y
1.0 —1
0.8 4
0.6
0.4+
0=

0]

=07

0 30

Figure 2.29 shows how the words WORK, WORD, WEAK. MW&
by the algorithm given the incomplete word, WORK, shown in Fig
WEAR, while they have features in common with WORK, are
words, WORK and WORD, and these inhibited words are push
levels. WORD first increases a little and then decreases to a
to the letter activations, as you can see in Figure 2.30,
is receiving support up from the features and down from
receives support from the bottom up. Ny

As we said earlier on, this program was designed
words and portions of words on a screen. Ru
in their two papers on the matter. It is not imp
It is enough to say that their method p
tests done on human subjects.

Pattern Re°°9"iﬁon i ¥

. comes from ap .
f this phenomenen come 5
restoration effect.” One exampl;c%rding of the word leglsmumi cdite
" some researchers [250] 00K aPeople wholhear this altered recording g
‘where and replaced it witha Cll:l;;eaﬁng {he click as a disembodicd sound,
- Jature” and also repo!
word “legislature

2.4 Expanding the Pattern Recognition Hlerareny

:r ou But before reaching doc
the The crowd stood silent,

they’d been shouting:

kside, Cronkite’s boat abruptly jammed aground.
3 ptly | i i
The veteran news anchor suddenly realized what

--low water> 1

“Low water .

In a more scientific ex; eriment Klatt? req ing the followi He recorded W
P ports doing the ving: L co

Hi ;' her L e\lels uous speech and, of course, when he played it back listeners Cloul ms:e’ i e word

; p! listy 1d gnize all the

However. when he broke up the speech into words and pl. 5 M
; l : a & ; 2 ayed th
P M % listeners could only recognize about 7¢ percent of the 5101)"58 TT'?;n back in a random order,

! e at conclusion is that mean-
ing and word order play a significant role in makKing it possible for people to ung r
speech. :

|
That A)‘L%’M e [’% y 2.4.3 The Hierarchy

To take into account these effects we can ex
hypothesize that people have two extra levels
FA

pand on the model of the last section
of pattern recognizing pro
| in Figure 2.32. We will designate them as the * level recogni: and “event.
@ / s $ / 5 q 5 A | recognizers.” Although this hierarchy makes sense, there is as yet no com
f)@ ie uses it, so this arrangement must still be considered highly theoretical. A
v While it was quite easy to model word recognition by having a Mﬁmﬁg
four-letter words. it is clearly not so simple to adopt that plan for sentence
level. Keeping an example of every kind of sentence is not reasonable.
natural language processing have generally held that in trying to ung
of sentences the proper way to proceed is to look for patterns uns,
and so forth. They believed that only after determining these
you go on to consider the meaning of a sentence. Ye
problems with this approach. Consider, for instance, the

ond the word level to the higher levels of
‘the world. For instance, suppose we have

tations that are possible to a machine
so forth. Flies could be interpret
possible meaning to a naive macl
time could be interpreted as :

“You should time flies the

K Pattern Hec%nm

event level recognizers 2.4 Expanding the prerisaos

ﬂgizt@!"""

i il ¢
"L‘i l J e
v

fy

IR e s sentence level recognizers
- ’ <s$> sshet il -
1 S i £

" Y i ! s

| <np> S

<vp>| kT

- : et il

e word level recognizers) Sty
hruw ' 3 <pn> T a0t
i -v”‘ v i <adj> <n>
eess letterlevel recognizers .
e
]
3 <pn>
line segment detectors 4 el
. g [
nly on low level features but on higher | m <n> arc
b * ’i
i <adj> §E)
o 4 \ 5
e from Waltz and Pollack uses J S ANA
¥ 4 o

Pattern Recognitiop, |
——— P onj|

blem. “John™ is a proper noun, the name

“shot” subnetwork he,
i ip. In the s 4
: is asi terminer for a group- It 5 i
and “some” is 83"'“",1,6.01 in used as an adjective. @ noun.:;. : verb. .le_en
indicate that “shot” is niﬁdgate that could follow the nOEIE h“"‘"‘ HI‘S s
averb is the only cal ctivated the verb meanings of “shot” are the On!y
Wizl nework 151: “fire” or “waste” nodes will come on. Tust ag iy
come upl,1 50 ﬁlf;'f,:w could only be a verb based on the order of words i
subnetwork where s l Y
in the “buck” subnetwork, “pucks” could on

wJohn” and “some” do not pose @ Pro

ly be a noun, again based on the
i tations will be wdeer” and “dollars. The bottom part
The possible interpref HUNT" and “GAMBLE" and ——

contains only (wo nodes, o will ultimately give the hunting
« y the networl
that apply. If "HUNT” is on.

B, v it SGAMBLE is on. the gambling meaning will wip
(ence, !

ierarchy

h ccurately reflects the fact that a human
Wi&m‘gﬁeﬂgh::k: the ma)}(,imum amount of sense out of
¢ that human minds actually achieve this result using Sfmple
In all likelihood, the algorithms secn here are just simple

architecture. L.
comes from the above considerations is ll'_nat tg ;?roduce
}ﬁmn performance capabilities will require giving that
knowledge of the world. Knowing a lof about the
mm@qj intelligence researchers expected would be
This “knowledge™ factor clearly makes the prob-
le to that of a human being much harder.
can get complicated and can require a
t they expect to see and hear what
believe what they want to see, hear,

2.5 Additional Perspective

rate with a 9 percent rejection ratet
actual US mail. A number of other such projects
et al. constructed a system consisting of a vid
processed by a PC equipped with a i
process 10 1o 12 digits per second,

Simple and efficient algorithms also exi t

; 510 take handwritten characters

These algorithms are faster and more accurate tt;:: - B
because the system can detect the beginning and eﬂdin"gp‘[i 2
strokes are made. For an example of one, sege the Ledeen cﬁﬂl‘iﬁﬁr iz
Appendix VI of [221], e e

In the way of hardware implementations, Mead has proc
behiaves much like & human retina (see [110] and [111), ©

©n hand-printeq

2.5.2 Realism

Some researchers like Fukushima believe that their models of visual
realistic, however, it is not really known exactly how the eye and nervous system
the data that a retina receives. One interesting result of studying human 2
is that it tries to get by with sending a minimum of information to
suppose we had a retina consisting of a 100 » 100 array of cells. T
cells and it represents a lot of information to be pused‘ahﬂg the
the cells of the retina are designed to only send information when
the color or intensity of light hitting them. Figure 2.34 sh r
white. If we place this picture on the retina, then, after about
of the cells will stop sending information except for the
the two colors. The cells along the border will keep sendi
actually oscillates with a frequency of about 1
the two colors is actually moving back and forth on the cells
changing inputs keep reporting while the other cells stop
100 x 100 cells, instead of 10,000 cells reporting,
In the brain, the brain fills in the en | areas
see the whole picture despite the fact t
on this see [82].) This experiment
simple artificial neural ne
complex models need to
visual processing can be fou
visual illusions.

¢ too,

Jnition |

g » cells stop reporting (o the brain afe
Figure 2.34: When this pattern 15 placed on a retind all the u]l [‘jJ ok '
ik s horder between black an !

(hout a tenth of a second except for cells that are near the horder be

In this chapter we have been working w ith simple letters and numerals because it is quite

casy 10 do so; however, recognizing three dimensional objects and finding objects in o
\n';lu has also been an important research area. The principles ivolved in recognizing
more complex objects are the same as those involved in recognizing letters, that is, small
edges are detected, these edges are then used to detect more complex features, and the more
complex features point toward the identity of the object Some methods only work from
the small features upward while other methods also work from the top down. Perhaps the
snizing 3D objects has been developed by Marr [105],
however Grossberg (see [54], Chapter 2) argues that Marr’s methods are unrealistic and he
has developed other methods to do the processing that he argues are more realistic

most well-known method for rec

2.6 Exercises

2.1, In Section 2.1 the pattern recognition method was tlustrated using only the patterns
E, F, and H. Expand this base of patterns to include a least five more letters and determine
how well your program works by submitting a few test cases (o the program. If you have
a computer or a terminal with some graphics capability where you can Jr;n\ lL‘llL:l'\ on the
sereen, expand on the previous exercise and write 4 program so that people can draw letters
on the sereen and then have the program identify 1hc|n.‘

22.Fi 25 di ave e
2 hgl.m" 3 did not have enough room 1o show the weights on the connections. Using
the matrix in Figure 2.4, jot down the the values of th 'bl ; P O]']‘-
g L alues & weig . S i
2,and 3 10 the E, F, and H nodes, cights that go from input nodes

2.3, Given the letter E shown in Figure 2.6,
the algorithm will produce. Ope S-lay
Figure 2.9,

« Produce the four §- and four (-1

i ayer matrices
CFmatrix and one

C-layer matrix are shown in

orithm located the
: ited the prege,
‘ © Presence of syhy
i = >UPpatterns or oper;
1€ entire matriy ¢ | G e
1X 10 find them If you did e 2]
you “XETCisSy I
Neocognitron does. Do this
gorthm in Section 2. |

neurons

cgions used in the

e Ol the AM/AN network will be after the
v nin Figure 2 25 R

2 - 2.24 is given it
rd as AM? e features of an M. minus feature 6, will the

2.7 plified network algorithm
2 w [n gorithm (used with the AM and AN example)
nphicated version actually used by Rumelhart : i
s WORK /A SRy nelhart and McClelland. In
o, l' ”!H\ WORD example where part of the last letter is missing
1 ng of the short line se: e SIS

2ments used in the text. Since this algorithm

1s useful
You may want to produce

this chapter

i e ’ general purpose implemen-
hm rather than one that is specifically tailored to the WORK/WORD

2.8. If you are interested in the effects that occur in the Rumelhart and McClelland word
{ twork fo \ > re
recognition ork that follow the results on human subjects, read those portions of the
Rumelhart and McClelland papers that discuss this and then give a brief listing and sum-
ary of the effects
2.9. It secems that the word recognition network of Rumelhart and McClelland may be
quite a nice way to recognize misspelled words. Consider how well it could do this if the

misspelled words included missing and extra characters. Consider what would be necessary
in the way of a sequential algorithm to recognize misspelled words that include missing and
extra characters. Compare the two methods

2.10. Below is a small map consisting of regions a, b, ¢, d, and e:

The map can be colored using three colors, say red, green. and blue, Nuih .ltul . :f:‘:‘l[:‘l': Ol;
one color never has a common border with a region of the \:xmc‘u?l(:. L\:;\‘::o[lxt;t; \:ré;n.
the regions meet at a point. If, for instance. a is green _‘h“"_h’ s ang :;:u»ti\e activation
The constraints involved in coloring the map can be ‘.ﬂmd Lo -y l-na a:een a node for
network. For instance, there can be a node that stands for region being green.

This program is available on the Internet

Pattern Recogn" ‘!Fir’]"
1l

¢ being green, and so on. If the node for a being
ns b, ¢, and e from being green, as well as activag,
red, ¢ is blue, ¢ is red. ¢ is blue, and so on_ DEVl]
d the colors of regions b, ¢, d. and ¢ given g,
any region can this method still find solutio, :,ht !
‘can be used to choose tic-tac-toe moves, Grey
an entire game starting from an empty boa,-:

‘game board. Suppose the board is the folloy. :

divided up as follows:

001
010
000

2.6 Exercises

In addition, use a rand,
all the units update at on::n u
network by choosing a unig i
£ at random an
and update it and then another, gng mmg;
make different moves gives : Yoas
N the same board

Chapter 3

Pattern Recognition Il

In this chapter we will look at more mathematically rigorous approaches to doing pattern
recognition. The most important of these will be the back-propagation algorithm. This
remarkable algorithm can be used to do a variety of highly useful pattern recognition tasks.
A number of applications of this algorithm will be shown.

3.1 Mathematics, Pattern Recognition, and the
Linear Pattern Classifier

The pattern recognition algorithms that have been presented here so far were designed by
their creators simply because they thought the algorithms would work. Much of Al is
simply done that way. You believe something will work and then you test it to see if it
does. To more mathematically inclined people this experimental proof of success, by itself,
is not completely acceptable. If at all possible, algorithms should be proven correct. The
side effects of such proofs should also give an insight into why the algorithm works, under
what (if any) special conditions it works, and hopefully too, some way of estimating how
long it will take to work

Most pattern recognition work actually has been a mathematical problem with the fol-
lowing form. Some characteristics of an unknown pattern are measured and these charac-
teristics are listed in a vector we will call @. If, for example, you were trying to predict the
weather, the measurements might include the barometric pressure, wind direction, wind
speed, temperature, cloud cover, and humidity. If, for example, you are trying to predict
the stock market, you would probably want to list at least the changes for the last few days,
the interest rate, inflation rate, price/earnings ratios, and so on. In any case, an operator,
we will call it Op, is then applied to the vector @ and it gives the identity of the unknown
pattern. In a mathematical format it is simply:

answer = Op(1).

Much of pattern recognition consists of finding and studying good operators.

3.1.1 The Linear Pattern Classifier

To be more concrete about the matter we will ook at an instance of this approach ina very
simple case, the linear pattern classifier. Take, for example, a set of four items of the class

55

B

Pattern Recognitio
e n i

class B. These might, for instance, be four exampleg
he letter F. There will be only two charuclcrisum
ass A, let the characteristics be:

A and another set of four items of thet
of the letter E and four examples .Of t
d for each item. For items from cl

measure
(-6.4) (=6.-1) (4,2)
Let the characteristics measured for the items in class B be:
m-gh Y= L) (=4 =7

These eight points are plotted in the xy-plane in Figure 3.1. They have been chosen so that
they are linearly separable. A linearly separable set of patterns is one in which a line, a
plane, or a hyperplane can be drawn between two different sets such that all the patterns i
one set are on one side of the line, plane, or hyperplane, while all the patterns in the seconq
set are on the other side of the line, plane, or hyperplane.

6

Figure 3.1: A set of linearly separable points.

From j; i i
i z/l;lj_u;l l((;zl;mg at the graph ofthei points in each class, we can conclude that the line
S regionn;af.ng’olher _n‘earby lines as well) can be used to separate the region of
e e o iQ\rVn;;]gt;lh: equalx)tion as & — 2y — 4 = (), the coefficients give
e, at can be used to separate the two classes of objects.
o mrdin;t:gl:{[s: that we augment each member of the set of ej ght patterns b a(iding
ith a constant value of +1, The examples of class A are now: !

(~6,4,1)

(=6,-1,1) (-2,-2,1
el 1=2,1) (4,2,1
and the examples of class B are now: :
7,- 2
(7,-1,1) (4,-2,1) (—1,—4,1) (—4,-7,1)

tics, Pattern R \
e ,7,1777;‘“£E}WI.”“|.,

57

ake 1 and form the dot product of it with o
lue. Dotting it with a member of ¢|
S g —4)-(=6.4, 1) gives-18 and (1, —
W (‘l‘\c ul;milhmc;m be formulated as

when We L
Laative Vi

member of class A, we wil

5 ok of class A, | get a

:\\l)B (w1|ll glvr A Positive value. For example
— 1, =4,1) gives +3. Figure 3.2 ‘

A el S +5. Figure 3.2 shows

0 A neural network. I the figure, the points (6,4, 1)

1. 1) are submitted to the network and the o t, whether tive or negative
‘ output, w 8
=4 ' , ther positive o v/

ne

giv

Figure 3.2: The linear pattern classifier can be viewed as a neural algorithm. The output unit looks
atits inputs and sums them. The coefficients in the linear pattern classifier are the weights in the
network. The coordinates of a point to be classified are input to the units in the input layer. On the
left, the network takes in the point, (=64, 1) and puts it in class A. On the right, the same network
takes in the point (=1, =4, 1) and puts it in class B.

In the above example it was easy to find a weight vector by looking at the points laid
out in two dimensions, however, it is not so easy if the points are in three-, four-, or n-
dimensional space. Fortunately, however, a learning algorithm exists that is guaranteed to
find a weight vector that can be used to separate linearly separable classes. The training
procedure works by taking members from each set and dotting them with an estimate for the
weight vector. Any initial value for the weight vector will work. If the weight vector gives
the wrong answer, it is changed, but if it gives the correct answer it remains unchanged.
The details as o how to change the weights are as follows. If 1 - i gives a negative or zero
value for a pattern @, and this is wrong, change the weight vector according to the formula:

W 0+ cll
where ¢ is some positive constant. On the other hand, if i - i gives a non-negative value
and the value should be negative, change @ by:

W 4 W — cil.
Members of both sets are continually submitted to the algorithm until it comes up with a
value for w that works for all the points. It can be shown that for any positive value of ¢,
the training process will converge. For a proof see [142].

As an example of how the weight vector converges to a value that \f/il{sepftralc }h§ two
classes, we start with the weight vector, @ = (0,0,0) and keep modifying u “'?"l 1i.can
Separate all eight points correctly. The results of the computation§ are shf)wn in Figure 3.3.
The result is a weight vector, i = (4, =5, —7) that represents a line quite close to the one
We chose by inspection.

Pattern Recognition |

CORRECT
RESPONSE

PATTERN
VECTOR. @

5
=}
5
7
7
7
7
7
7

6-
6-
6-
2.
Sl
7
2.
2
2.
4-5
4-5
4-5
4-5
4-5
4-5
4-5
4-5
4-5

re 3.3: i ini
Figu Responses during training of the simple linear pattern classifier,

NEW WEIGHT
VECTOR

o
A

91010 1

[PSIOIS RS

ENENES

O\O*O\OG\O\MLI\M&A

NNawaay

N

3.2 Separating Nonlinearly Separable Classes
3 = oAbl

3.1.2 ADALINEs and MADELINEs

Some other versions of linear pattern classitiers hay
searched linear pattern classifiers from the
clectronics. He called his linear classifier a
Widrow also experimented with putting may
MADALINE for Multiple ADALINES. One very interesting application of an ADALINE

s done by Widrow [258] at Stanford in the early 1960s where he used a linear patt
classifier 1o predict whether ot not during the rainy season in San Fmﬁciwo it wnul;:ll re\:‘\
today. tonight. or lomom.)w. The input data was a set of barometric prex;urc readings a;nd
changes in pressure readings in the Pacific Ocean from Alaska down to almost the ;‘quu-
tor. The results of the experiment were that the program was able to predict ;ain for San
Francisco just as accurately as Weather Bureau meteorologists. Widrow also designed an
“artificial neuron™ in which the input weights could be changed by plating or unplating
copper on very thin pencil lead.

3.1.3 Perceptrons

Another important researcher into pattern recognition using neuronlike elements was Frank
Rosenblatt [177]. His systems of linear neuronlike elements were known as perceptrons.
(The term perceptron is often applied to the linear pattern classifier as well.) The learning
algorithm employed was known as the perceptron convergence procedure. Its learning rule
is known as the delta rule. (This rule is derived in Appendix A.) The ability of perceptrons
and the delta rule and any linear pattern classifier to learn complex functions is limited,
however. In 1969, Minsky and Papert produced a book, Perceptrons (reprinted and ex-
panded in 1988 [125]), in which they showed some of the limitations of perceptrons. This
book is often credited with almost completely stopping research in the field. Since then,
however, researchers have produced improved networks with nonlinear activation functions
that are capable of learning nonlinearly separable patterns. The back-propagation proce-
dure described in Section 3.4 can learn such patterns.

3.2 Separating Nonlinearly Separable Classes

Most pattern recognition problems cannot be solved by linear neurons because the surfaces

separating the patterns are not linear. Since researchers realized the limitations of networks

of linear neurons, most pattern recognition research has tried to find ways to separate pat-
tern classes using more complex pattern recognition operators. Thus, there are operators
that can take a set of points like the ones shown in Figure 3.4 and separate the points into
two different classes using a surface more complicated than a straight line. We will neglect
looking at these more complex operators and instead describe a few simple methods for
dealing with nonlinearly separable patterns.

3.2.1 The Nearest Neighbor Algorithm

Possibly the simplest way to classify an unknown pattern at the point (z, y) is to compute
the Euclidean distance from this point to every other known data point and find its nearest

Psnerrlggcognlﬂon n

that is not linearly separable. These are the same points as in Figure 3,1
ts that is y S ! : e
13.-1) in class A and the points (-2.1) and (2.1) in class B. The line dividing

pace.

Figure 3.4: A set of poin
lusdncpoints(l3.l)und(-l
1‘1’75 two classes is just one way (o divide the s]

ichbor. We then assume the unknown has the same identity as its nearest neighbor. For
il::tince Iin Figure 3.5 we can assume that the point marked as “X" is from L.‘lllss A and the
point mal-ked :s Y is from class B. Figure 3.5 also shows how the space is then divided

g the 12 data points. In actual use, the more data points you have available, the

up usin; 4
3 ts are generated at random from the

better the classification accuracy will be. If 1,000 poin
distribution shown in Figure 3.4 and another 1,000 points are used as test cases, about 98

percent of them will be classified correctly.

Besides classifying an unknown point by finding its nearest neighbor, you can find its k
nearest neighbors and let each neighbor contribute one vote toward identifying an unknown.
This is known as the k-nearest neighbor algorithm. Another variation is to let each of the k
nearest neighbors contribute an amount that decreases with its distance from the unknown
point.

A nearest neighbor algorithm by Simard, Le Cun, and Denker using a different distance
measure (not Euclidean) has managed to do better than all other algorithms on two difficult
databases of handwritten digits [208].

3.2.2 Learning Vector Quantization Methods

’I.‘hm has also been a recent series of al gorithms called Learning Vector Quantization algo-
?Dﬂ;x;ids: LVQ1,LvQ2, LVQ2.1, and LVQ3 (see [84, 85, 86]) and Decision Surface Mapping
iy l;g:ﬂ;u(’i:;: anl(ci Snftc [51], that use the nearest neighbor algorithm but instead of stor-
store on]ya,e]aﬁv::;) prs:lllts and searching through them to find the nearest neighbor, you
points thatare high] y 8 ﬂuml_)er of pattern vectors called codebook vectors or prototype
with a initial set of)’::fl’fseman.ve of the patterns in each class. In these methods you start
the classification peffm(r’n}’np;p?l:;s and then move these points around to try to increase
tithms are new there haye been(:" © nearest neighbor algorithm. Because the LVQ algo-

W applications of them so far, but in a speech recognition

61

B

Figure 3.5: Using the nearest neighbor algorithm, point X will be classified as an A and point Y
will be classified as a B. This figure also shows how the space i) 8 ¢

pace is divided using the nearest neig
classifier with the 12 data points. 2 the nearest neighbor

problem Kohonen [85] reports better results than with any other algorithm he has tried.

The DSM algorithm is even simpler than the LVQ algorithms and it is reported to train
faster and give better results than the LVQ algorithms for some types of problems. It works
as follows. Let prototype point i be labeled as pi and a training set point i, be {;, then:

Find the nearest prototype point, p,,.
If p,, is the same class as ; (a right answer), do nothing,
otherwise, move p,, away from ¢, using the formula;
Pn = pn —a(ti = pn),
where a is around 0.3 or less and it slowly decreases with time. Furthermore,

find the closest prototype point, p., that gives the correct answer and move it
closer to t; using the formula:

Pe = pc +a(ti — p),

where again, a decreases slowly with time. Repeat these steps for several

passes through the training set.
As an example,' we will take 10 prototype points at random from the distribution given in
l_:igure 3.3. These points are shown in Figure 3.6(a). We will then generate 1,000 points
tlor training and 1,000 more points for testing. These points will be the same ones we men-
tioned using the simple nearest neighbor algorithm. The initial performance on the training
fmd test sets is around 70 percent. We then make seven passes through the training set us-
lng the values of 0.3, 0.2, 0.1, 0.05, 0.025, 0.01, and 0.005 for a. The final result is shown
in Figure 3.6(b) where about 98 percent of the training and test set points are classified
correctly. Notice that with the simple nearest neighbor algorithm, approximately 100 times
more prototype points were used to reach the same level of classification accuracy.

'Results will vary according to the random points generated for training and testing.

Pattern Recognition n
bbb o'

ti\il‘:r;:.gl.mad;moar:mw how DSM works, 10 prototype points were generated at random and

o e mndomp,\ﬁg)' Tlhe:y give a 70% correct classification on the test set of 1000 points

A i s “.,e 9;;)% lying DSM thg pon?ts have been moved to the locations shown in part

el e edile 2 98.5% correct classification on the same test set. One of the B prototype
Ve low the area shown. The dotted lines in each part show the correct boundary.

5.3 Hopfield Networks

el 63

3.3 Hopfield Networks

we will now look at a lllcn@licully important type of network called the Hopfield etwork
after Hoptield [68] who originated it. It is important because it is puwibls to ‘1::\ ‘““‘;‘"(
under the pilrliCFlll?l' assumed conditions of the network, the network ;'ill cmwt‘r'c‘lu :‘n
answer, even if itis pgrhup.ﬁ nQI the best possible answer. Knowing that a nc‘wsork v:'\ll
converge (0 an answer 1S quite important because some Kinds of networks never converge.
They may just constantly Keep changing and so they never do settle down to any conclu-
ion. Proving thata Hopfield network will converge is quite easy to do because there is
4 mathematical quantity associated with the network called the computational energy that
will always decrease or, at the very worst, remain constant. When the compuuniu}m] en-
ergy of a Hoptfield network stops decreasing, the network will be at an energy minimum,
although not necessarily at the lowest energ;

t . y minimum. The lowest minimum represents
the best answer. To deal with this problem there is another network updating algorithm,

the Boltzman machine relaxation algorithm that we will cover. Besides the theoretical im-
portance of Hopfield networks, they are also important because they are designed to store

items, or memories, in the weights connecting the units and so they are a candidate to model
human memory as well.

3.3.1 The Hopfield Network

In a Hopfield network, the processing units take on only the two values 0 or 1. (Another
version of the network has them take on the values —1 or 1.) Each unit has a threshold
value associated with it such that if the input to a unit exceeds its threshold, the unit will
turn on (become 1) or stay on, and if the input to a unit is less than the threshold, it will
turn off (become 0) or stay off. The weights on the connections between the units take on
the continuous set of values from —2c to +0o. Also, if the connection weight from unit i
to unit j is designated as w,;, then the connection weight from unit j to unit i, w;;, will
equal w; ;. Such weights are said to be symmetric. Finally, the updating of the values for
each unit is done asynchronously. This means that units in the network sort of take it upon
themselves to update when they get the urge to do so (at random). If you “take pictures” of
the state of the system at small enough time intervals, you will find only one unitis doing
an update at a time. In the interactive activation network the updates for all the units take
place at the same time, hence, in that type of network it is said that the updates take place
synchronously.

The energy function for the n units in a Hopfield network is:

E=- Z w;j8i8; + Z 0;5;.

i<j i

where w;; is the weight between unit i and unit j, s; is the state of unit i, s, is the state f’f
unit j, and 6, is the threshold of unit . To examine the meaning of the energy definition in
detail, consider the simple network shown in Figure 3.7, We will first neglac! the second
term of the energy function by setting all the f;s equal to 0. Here, the connection be?wegn
aand b is +3/4, meaning that, if unit a is on, unit b should likely be on as well or if bis
on then a should also be on. If we assume that a s currently on and b is currently off, the

")

. : o h four nodes, a, b, ¢, and d with their values and Weighgy
ig 3 le Hopfield network wit

Figure 3.7: A simp!

as shown.

contribution of this pair to the energy of the system will be -3/4 x 1 X 0. butif b is turned
on, the contribution will be =3/4 x 1 x 1. So now, if we do turn on unit b, the energy of the
syslem will decrease by 3/4. Now we look at the link ht‘l“_‘t‘tfll cand d. The ~7/8 says tha
if d is on, it is quite likely that ¢ should be off or if ¢ is on, it is quite likely that d should be
off. In terms of the computational energy, if both ¢ and d are on, the contribution of the ¢-d
link is +7/8. The energy could be decreased by turning either ¢ or d or both of them off. In
effect, the formula contributes penalties to the total computational energy when units that
are off should in fact be on, as well as when units that are on should in fact be off. The goal
of the algorithm is to remove penalties and therefore decrease the energy of the network.

To see why there is the), 6;s; term in the energy definition, notice that the difference
in the computational energy between the kth unit being on and the kth unit being off is:

AL = Z Wkisi — O

.If this term is positive, it means that the input to the unit k from the other units O, wrisi)
Is greater than the threshold of the unit . As it turns out, this is exactly the rule used to
decnde_whether or not the unit k turns on. So, the System can go about its computations just
by hfivxng each unit look at the inputs from other units and all the time the system will be
moving toward a minimum energy state.

::l[:ﬁflof an energy unit from node c. Additionally, the § term will contribute ~1/2. This
i ;i::kls gre;ler than 0, so node b will be turned on. This changes the energy to 11/8.
R ial wt :ther Or not to change node c. The input it will be receiving from b is
S npul l‘OH.l d will be ~7/8 and the threshold term will be —1/2, giving a total

» an because this is less than the threshold it will cause ¢ to turn off. The network
energy will now be 6/8. Figure 3.8 shows how the ;
the updates are made. Note that the energy levels
the enagy levels will approach a continuum, The i

3.3 Hopfield Netvyorks - Reten NI TR e
0 (o
15/8
1l
E
10/8
1101
S/8
Y | 2 K, 4 3
time

Figure 3.8: Starting with the initial state of 1011, updates to the network lower the energy level. This

plot shows the progress after b and ¢ are updated. How far will the energy drop if the updates are

continued?
3.3.2 Storing Patterns

345
678 910
11213 1415
16 17 18 19 20
21 22 23 24 25

] 2

i i 4 “ase e and 7. The units
Figure 3.9: Two patterns that will be stored into a Hopfield network, a lowercase € a
are numbered as shown on the right.

i at a minimum of the en-
When a Hopfield network stores a pattern the pattern will be stored at a minimi

i ate its units and
ergy function. Given part of a pattern, the network wn!l update :a unl;:i\»s e s
to the minimum that represents the whole pattern. To illustrate how this $

Py lbracim, s take two small
how it is possible for the network to become stuck in a local minimum, let u
patterns in a 5 x 5 matrix, a lowercase e and the g
There will be 25 units and each unit will be connecte ll;
will be a total of 25 x 25, or 625 connections, each wit o il
the weights in a network is the following.” If a unit in the 7 pattern,

? Another way is given in the next section.

move downhill

Greek letter 7 as shown in Figure 3.9.
all the other units, meaning lhgre
a weight. One way to determine
say unit |, is a | we

66

Pattern Recognition |
=1

0000 2-2 20 2-2-2 0-20 0-220 2 0-2 0 o
0.0 2 2 0.0 0-2 00 0 2 0 2-2 00 =2 0 2 0 2 -9
0 202000-2000 20 2-200-220 2 0 2-=2
0 2 20000-2000 20 2-20 0-2 0 2°0 2~y
2 000 0-2 20 2-2-20-20 0-220 2 0-2 0 o
-2 0 00-2 0-2 0-2 2 20 2 00 2-20-2 0 0 0 2 0 o
2 000 2-2 00 2-2-2 0-2 0 0-22 0 2 G 9. 0= 9
0-2-2-2 0 0 0 0 00 0-2 0-2 200 20 2 2-2 9 -2 3%
2 000 2-2 20 0-2-2 0-20 0-220 20 [Ny 0 0
-2 0 0 0-2 2-2 0-2 0 2 0 2 0 0 2-2 0-2 0 O 0 0 o
-2 0 0 0-2 2-2 02 2 0 0 2 00 2-20-20 00200
© 2 2 2000-200000 2-200-20-2-220 2-2
2D 0 0-2 2-2 0-2 2 2 0 0 0 0 2=2 0-2 0 0 0 2 0 0
0 2 2 2900 0-2000 20 0-200-20-2-220 2-2
0-2-2-2 0 0 0 2 00 0-2 0-2 0 00 20 2 2-20-2 2
-2 0 0 0-2 2-2 0-2 2 2 0 2 0 0 0-2 0-2 0 0 0 2 0 0
20 000 2-2 2 0 2-2-2 0-2 0 0-2 0 0 2 0 0 0-2 0 0
§-2-0"-2 90 o 0 2 00 0-2 0-2 2 0.0 0 0 2 2-2 0-2 2
BgNg 9. 2-2 2 - 2-2-2 0-2 0 0-2 2 0 0 0 0 0-2 0 0
UEvEas g 0 0 2 0 0 0-2 0-2 2 0 0 2 0 0 2-2 0-2 2
eseges 0 0 0 2 0 0 0-2 0-2 2 0 0 2 0 2 0-2 0-2 2
BN e 0 0~2 0.0.0 2 0 2-2 0 0-2 0-2~2 0 0 2 -2
ERNERONeT2 2 -2 0-2 2 2 0 2 00 2-2 0-2 0 0 O O O O
SRR 0 D 020 0 0 2 0 2-2 0 0-2 0~2=2 2 O 0-2
0-2-2-2 0 0 02 00 0-20-22 00 20 2 2-20-220
Figure 3.10: The matrix produced for the 7/e example.
ol ~10
=15 15
20 =20
—25 \
\ ! F—25
2T
J - —30
-3 =
€ L -35

Figure 3.11: Part of the energy landscape for the

shallower minimum at -2
levels are discrete, not con

Lin between. In realit
tinuous.

m/e problem with 7 and e both at ~33 and another
y the landscape is 26-dimensional and the energy

field Networks
33 RO e o 87

take a look at the other 24 units. Unit 2 is on so there should be an activation link with a
value of +1 fromunit 1 Ifw unit well as from unit 2 to unit 1. (N‘uuuc‘ how this rcc'\l\.\
James' rule: “When two ideas have been active at once, or in immediate succcwmr‘\ un;‘ of
them on re-oceurring tends to propagate its excitement into the other.) Thcrg; lz\l\"ulwnll be
41 links from unit I to units 3,4,5.7,9,12, 14, 17, 19, 22, and 24. Now when ur‘\il lison
unit 6 should be off. This can be arranged by having an inhibition link (value -1) hcl\;vcul;
unit | and unit 6. Notice that under this plan, every other | in the 7 pattern will also work
(o inhibitunit 6 as well as work to inhibit every other unit that is zero. (James dlk{ not say
this!) Finally, if a pair of units are both zero, the weight between them is set to 1. These
weights are conveniently defined by the formula;

wij = (25 ~ 1)(28; = 1)

Let the weights for the e be the matrix 1V, and the weights for 7 be the matrix Wa. The
weights for the network that stores both the ¢ and the 7 are obtained by simply adding the
(wo matrices, ' and 115 together:

W= Wy + W,

giving the matrix shown in Figure 3.10. We still need a threshold value for each unit and
let us (rather arbitrarily) choose a value of +3 for every unit. Given all these weights, we
end up with what we might call an “energy landscape™ that contains two large minimas,
one for = and one for e, and unfortunately many other low spots that the network can be
trapped in. Representing the energy landscape for this problem is rather difficult because it
is a 26-dimensional space; however by simplifying it, part of it looks like the one shown in
Figure 3.11. The minimas for 7 and e are at =33 and in between them is another minimum
with a value of -21.
Figure 3.12 shows the reconstruction process for the initial state shown in the upper-
left-hand corner of the figure. The initial state has the characteristics of an incomplete
¢ pattern and we clamp the units that are 1 at | while allowing the other units to update
themselves. The relaxation process completes the e when the minimum of -33 is reached.
In Figure 3.13, starting with an incomplete 7 pattern, the relaxation process becomes stuck
at an energy value of —18. In fact, if the 1 units were not frozen at 1, the network would
turn off unit 1 so it could fall down in the minimum, 21, shown in Figure 3.11, To get
the reconstruction process moving again we can set unit 5 equal to 1, in effect giving the
network another clue that the pattern is a 7, this is shown in Figure 3.14. This raises the
energy level to —17, but by updating the rest of the units the 7 pattern is completed. Because
Hopfield networks are oriented toward storing patterns or memories in the network weights,
it is sometimes said that when a network falls into a local minimum it is experiencing a kind
of deja vu, in which it remembers something that it has never really seen.

3.3.3 The Boltzman Machine

In order to try and avoid local minima, researchers have devised a plan, where at the start
of the updating procedure a lot of jumps uphill are made at random, and then as time goes
on, the chance of taking a step uphill gradually decreases. This is the strategy of an ubst{acl
kind of machine, known as a Boltzman machine [66]. In it, the high probability of taking

Pattern Recognition i ‘ giaHopflBld NBIWOIRE 4 e o 6
paEs—
sl RN T o o T O TR O s e o o
? (I) (I> (l> I)] (1) 411 000[[L0O000 000 ‘I’ :: 00000[l00000]||loo0o (l) '()» nl) (l; (I) (l) (1)1
L0000[[10000 10000 nll)““ OrTorolororolloroqg 01010
L 0000|[1000O0]|/1 0000 00 UI() 00000 1/00000/((00000/|l0ooaoo
0000000000 00000 010 0101 olHOLtOot1O0|{lo101 0 & g g
ks test 8 initial test 3 test 5
AI"A:‘-” AF = -9 pattern SF =9 Al =~}
g=i6 E=6 r=-9 S
o1 11001110 ||||r)11||ﬂ|1|10
10001 (|1 0001 0000010000000 0001[00000
11 100({1 1110 orotropororolotrotroflorotollororl o
1000010000 00000HOO0OO00[I00000(|l00000I|l0000O0
00000/[[00000 0101001 O0OT1TO]||l0O1O0T10 101001010
test 13 test 14 test 8 testY
AE=5 AE=5 AR =-17 AE = -1
= -5 [:':—IUJ L =—18 E=—158 X
g1114 FII()IIIIUIII 110
10001 0000000000000 O0O0O|[00O0O0OI[[00O00O0CO0
11110 O1Lo1TOojorotrofjortorof{lotrotrollororo
10000 0000000000000 00[{O000O0I[|00000
00000 | 0101 O0O1TOTLO[lO1TOTO0OTOTO]||l0O1OT1O0
test 20 test 15 test 16 test 17 test 18 test 19
AE =13 AE = =17 AE = -5 AE = <} AE=-17)
E=-10 E=-18 E=-18 E=-18 E=-18
01110 F Y1 Ye FIryvea 11110 11110
10001 00000 00000 00000 00000
t bl 01010 01010 01010 01010
10000 00000 00000 00000 00000
0 1= 3 Ir 0 01010 01010 01010 01010
test 20 test 21 test 23 test 25
| AE = =17 AE =-17 AE = -4 AE =-17
‘ B=x18 7= —18 E=-18 E=-18

Figure 3.12; Starting with a partj “er :
% partial letter “e” shown in th i o .
Hopfield network reconstructs the missing SRl e i ihs upper-lefi-hand comer, the

Figure 3,13; For the incomplete pattern shown in the upper-left-hand corner the network gets stuck
parts and the energy minimum is —33,

inalocal minimum with an energy of ~18.

Pattern Recognition 1

I

1000
1010
0000
1010

01010
test 7 [

test 8

00000
01010
test 15
AE=-17
E=-21

1 1 B S

1 1 }0 I T T

1 1 01010

| 1 010t 0

1 1 01010

test 20 test 21
AE=-17 AE = -17
E=-33 E =-33

Figure 3.14: With an extra kick
unitS= |,

the network completes the 7 pattern. The kick consisted of setting

3.3 Hopfield Networks
SRS Ses Al

| step uphill reflects a high “temperature”

while as the §
of a random step uphill de

1ses until the system “free
Jandscape. This process of cooling the Systemis often ref
hecause itis analogous to what happens in metals
and then cooled slowly. The atoms or molecules
repel and attract each other. When these atoms

ystem “cools down.” the chance
" ata minimum in the energy
erred 1o as “simulated annealing™
;‘uld other materials when they are melted
in the material have electric charges that

1.0

| N R SR s

. Al
-5 -4 =3 -2 -1 0 1 2 3 1 5

D

Figure 3.15: The probability of tuming a unit on as a function of the unit’s input for temperatures of
0.25, 1.0, and 4.0

A simple modification of the Hopfield updating procedure leads to the Boltzman ma-
chine recall plan. The modification is that the probability, py. of a unit k becoming | (or
staying at 1) at temperature T is given by:

1

P = e RRTT

A graph of this function for several temperatures is shown in Figure 3.15. Notice that at
high temperatures and negative values of AL}, the probability of a unit turning on and
increasing the computational energy is much greater than for low temperatures. As the
temperature goes down, units that do not fit within the pattern are less likely to turn on,
Even then, however, sometimes a unit with ALy < 0 will turn on. At very low tempera-
tures you approach the Hopfield relaxation procedure where a unit only turns on if its input
is greater than its threshold. The Boltzman procedure in effect lets the network sample a
great many portions of the energy landscape. If in so doing the network happens to find
a deep minimum, it is unlikely that taking a step upward will bring it out, so thereafter
it will continue to settle down, whereas if it is in a shallow minimum, one step up could
casily get the network out. The theory behind the Boltzman machine also shov'/s that as the
temperature approaches zero slowly, the probability that the network will be in the global
minimum approaches 1. r

The effectiveness of the Boltzman machine recall algorithm is illustrated in ﬁg}lrc ?.‘6
using the partial 7 pattern shown in the first frame of Figure 3.13. The network’s initial

Pattern Recognltlon n

1.0
0.8 ///"’_—_‘

0.6
0.4
02
0 o 100 150 00 20

Figure 3.16: Given the partial = pattern shown in the first frame of Figure ‘ 1 :1. lhc‘llppcr.L‘ur\’c.s.h(\wh
the probability of being in the global minimum of —3.3 and the I.nwer curve shows lhe p!ohubllny of
being in the local minimum of —18 as a function of lmjlt, The flmc is the r:umhcr of units that wer,
updated at random while decreasing the temperature linearly from 4 to 0.25.) When the network is
cooled rapidly it often ends up in states other than ~33 or - 18 so the probabilities do not add to 1.

temperature was 4.0 and it was cooled linearly to 0.25. The amount of time taken to cool
the network is simply the number of units that were updated at random as the system wag
cooled. The results show that the probability of being in the global minimum of —33 js only
0.3 when 50 updates were made but it rises to 0.93 when 250 updates were made.

Another method for overcoming local minima is to redefine the system so that the
activation values of the units take on continuous values and the updates are done as in the
interactive activation model [69]. This procedure does not guarantee that the system will
settle into a minimum, however,

3.3.4 Pattern Recognition

g how Hopfield networks can do pattern completion in this section,

We have been considerin
but ly do pattern recognition as well. In the /e example we could add

the methods can easi
tWo extra units to each

indicate a and unit 27 could indicate an e, Now given a pattern, even an incomplete one

or one with ? small amount of nojse present, the network wil] complete it and identify it as
well by turning on unit 26 fora or unit 27 for an e,

335 Harmony

‘S;n; ;:ss:a;fcl:;rf ha\(e also‘deﬁned a Quantity similar to computational energy, called
s gt “h‘ whxch"theu: Systems then attempt to maximize. Another similar con-
S _aqnony. wh'nch a network also attempts to maximize [217]). When the

maximize 3 Quantity, the searching process is called hill climbing.

pfield Networks

. L&)

Figure 3.17: An ambiguous pattern that could be either or e.

o1, the Hoplicld/Boltzman machines u}rc. like people, somewhat unpredictable. In the r/e
First.t lepending on the exact order in which the units update themselves, the network
"d\wrk: (-qullchrc?t conclusions. Given the pattern in Figure 3.17 that contains only the
could m‘.L]nmun to both and ¢, and updating at random, it is clear that sometimes the
e Lm[] settle down to the e minimum, but with a different sequence of updates it might
newoth to the = minimum. This is interesting because if you give this problem or many
settle dov.vnd of problems like this to people, some people will find one answer and other
similar I\vl'll1] t;nd another, and even the same person may give one result on one occasion and
people ! ult on another occasion. From the last chapter, recall the sentence, “John shot
the olhﬂfﬁ. If you do not know whether John was hunting or gambling, your mind Cf\u\d
‘Omc hL:‘ :'"m cy”her the hunting or the gambling interpretation. Because this algnn{hm
easily ‘ ‘ﬁhe kind of random results you get from people. it makes some researchers feel
rl:(:ldll;;i:nodcl of artificial thinking may be close to how people’s minds actually operate.

Second. another phenomenon that hupp:ens in human problet‘nv sal\fmg ‘;‘L:‘:luf‘zosl:
often seem to get stuck in local minima. First, they muy‘gel su‘mlk Qn Alpr: e it
be able to find any solution at all, or second, they may find a sol ulm:‘ ohu p o 10 poor
satisfies many of the required constraints, but not all of them. thn 'l"l's " p{: i»“m e
ple the solution is to start over fresh in l}upes lha.\t a better solunondwl‘)Jr\;m‘:ng e syt
minds. Starting over in Boltzman machine lcntmm.ology colrres;‘)ott: :-(mlulion 1t is casy
e e e mndor’nl‘clilpi(;ml(:S , ;V:th"(:i:“:::‘:‘“ :le:(rvl atall ()t;vious how
to see how this happens in the Hopfield/Boltzmai 5 LIt s e
this phenomenon can happen in a classical von Neumann MCh;:'E‘u-‘:;ereT:\:‘t::fu::hly o
algorithm with classical data structures. The von Neumann :‘xrcwl ?L h(;rc L
dictable and there is no reason why the system shoUId getl Mu%k[‘mz:;ition 49 poople i
or give different responses to the same input at different urr‘ne;s.m End an answer they wil
linding correct solutions to problems, when people are rus iution, Agsin, ju Baltzmen
not necessarily find the best solution, but only an adequate S?he] stlem quickly and then
machine terminology, being rushed corresponds to cooling ; 3’
there is an increased chance that the best solution will not be found.

. ing from the stand-
Although the Hopfield/Boltzman algorithms are extremely ".‘,‘f'f.:ﬁﬁ.fhms. very little
point of being much different than the classical symbol Pmc?s: gHalici and Sungur [56}
has been done with them so far. One interesting application lSSO}ziA puzzle problem.
Where they use the Boltzman machine algorithm to solve the

7——f

Pattern Recognitioy, n

74
3.4 Back—Propagaﬁon

single most useful neural qelworking algorithm, | is
d ifs Jearning rule is sometimes cu]l.ed the generalizey
< are sometimes referred to as multilayer Perceptrong
formal justification for the formulas. however there

In this section »;ehg‘ pack-propagation algorithm formulas in Appendix A. Until very ro_
isa deqvatmﬂ ol thfun]ikelv thu:anvthing like back-propagation occurs in the brain, hoy,.
cently it was Iho”:’ome specl;la[ion as to how the brain might implement back-propagation
(esv:er[‘?f;? 1;6";;“;”‘1 [26]). Users of the algorithm call it backprop.

1 has become the

a generalizulion of the de.hu rule ank

delta rule. Back-propagation netw or
ive only some In

Back-propagatio

3.4.1 History

5 . i ber of times. At this time it appears 4
Back-propagation has been discovered a numt . S the
ﬁ;:f dfﬁvgziin of the algorithm was by Robbins and Monro in 1951 [176]. Their discoy.
ery was reported by White in 1989 [256]. Also in 1989. Hecht-Nielsen [65] noted thyt
In 1974, Werbos independently req.

it was discovered by Bryson and Ho by 1969 [16].
erived it [252]. Since that time, Werbos has been studying the use of b“Ck’PTOPagatiOH

in various economic modeling and artificial intelligence problems (for a listing of articles
see [253] or [254]). Unfortunately, Werbos’ work was not discovered by the Al community
until 1987. Back-propagation was again independently rederived by Parker [146, 147] and
finally made well known in 1986 by Rumelhart, Hinton, and Williams [180].

3.4.2 The Network

1.0

' ' J I 1 T T T T l

r
=5 -4 -3 -2 -1 0 1 92 3 4 3

ly used back-propagation activation functi 1/(14€77).

8

Figure 3.18: A plot of the most

One of the speci .

being wgsimfgmzxms@ aﬂq Papert gave in their 1969 book, Perceptrons, for

and where the neurons use 3 Jj netwoﬂsmg' was that networks with any number of layers

could not lear many imponan:nei: activation function (as in the linear pattern classifier)

the exclusive-or (XOR) of tw ba.n useful functions. For example, they could not compute
0 binary inputs. Back-propagation uses a nonlinear activation

k-Propagation
%A/Bac/_ﬂ'_;wgw 715

function and |(>'cun‘ t'vc usec} (o do the XOR problem and other problems where nonlinear
curves and surfaces are '}?Lchsdry‘ such as the problem of separating the nonlinearly sepa-
rable regions sh_own in Figure 3.4. The back-propagation algorithm will work with many
activation functions but the most commonly used one is:

L
[+ ety

0j =

where neljis .lhc sum o.f lhf‘ inputs to neuron j and 0j is the activation value of neuron j.
This function is shown in Figure 3.18. Functions like this with an S-shaped character are
referred to as sigmoids. netj is defined as:

nety =3 wijo; + 0

where w;; is the weight connecting unit i in a previous layer with unit j and o; is the
activation value of unit i. The term 6; represents the weight from a bias unit that is always
on (=1.0) and it functions like the threshold value in other networks.
This activation function has some important properties. If net; = 0, so that there
is no activation at all coming into node j, then o; = 0.5. A value of 0.5 for a node
therefore means the unit is “undecided.” Also notice that to raise the activation value of a
unit to exactly +1, net; would need to be infinite and to achieve a value of 0, net; must be
negative infinity. Plus and minus infinity are rather hard values to reach so in reality people
usually consider the output for a pattern to be correct if the values on its output node(s) that
are supposed to be 1 are at least 0.9 and the values of its output node(s) that are supposed
to be 0 are below 0.1. Less stringent limits are used at times. When a network is being
tested with unknown patterns, any value greater than 0.5 is often considered to be on and
any value less than 0.5 is considered to be off. Usually in classification problems the output
unit with the largest value is considered to be the answer whether the largest value is greater

than 0.5 or not.

output layer

b4 (bias unit)
495 hidden layer

b3 (bias unit) n2 input layer

W ()

Figure 3.19: A three-layer network to solve the XOR problem with weights produced by back-

Ppropagation.

Pattern Re(;ogn|“°n 0
o

SN 2L L
G 6
Z////// ined to compute the XOR functiop, The

at has been trat : e . v
(opology of the networ ion algorithm. The layer ofly o In berwveen th put ang
been found by the e if the network is ”“”]V‘. hl? e \\ With inpy,
output units is calle : the hidden layer units cannot be seen. Unit b3 is " T;.‘ur‘m for the
units and output uml»*‘ d bd is the bias unit for the output layer unit. n4. The patterng
hidden layer unt - ﬁnc(\VLwrk responses (0 these patterns are:

be learned and the actu:
nd nd
n (desired) (actual)

1 091
0.08

ows a network

0
0
1
1

This particular XOR network has connections ffom the first to .lhc third layer. Typi-
cally, back-propagation networks only have connecnpns between adjacent Iu)(ers but there
is one report that adding extra connections from tl?e input to the output Iuye.r improves the
algorithm [220]. Networks can also have connections between units in a single layer and
the number of hidden layers is unlimited in principle. In practice, three»lqyer_ networks
work well for most problems. Networks are often described by the nun?ber of units in each
layer. A network with 19 input units, 12 hidden units, and 7 output units is then described
as: 19-12-7. In this description the bias units are not counted. Ordinarily, bias units are not

shown in diagrams of networks either.

3.4.3 Computing the Weights

To find the proper weights for a network, all the weights are started out at 0 or small
random values. Then, a training pattern is placed on the input level units and this produces
aresponse on the output units. This output pattern computed by the network is compared
with what the answer should be and modifications of the weights throughout the network
are made in order to make the computed answer come closer to the correct answer. Every
weight in the network can be regarded as a variable or a dimension in space. This process
of changing weights to try to minimize the error is then called a search through “weight
space.” .The search to try to minimize the error is much the same as trying to minimize
energy in a Hopfield network and the process is subject to the same problem as in the
Hopﬁe_ld network: it is possible to come to a local minimum that it is impossible to get
out of if you only try to go down. Moreover, a second problem exists in back-propagation:
if the weight changes are too large it is possible for the errors to increase as shown in
Flg\ln? 3.20, whereas in the Hopfield network there was a guarantee that the energy would
never increase.
G Fﬁ;:;xzwh;:f;:’cm::i!“:hmﬂflg process, we will start with the network shown
inpuL units, the output unit has a vale op b . |/ W Place the pattern (1,0) on the
e e theue of 0.5 instead of the target value of 1. We now need
8¢ the weights so that the next time this pattern is presented,

3.4 Back-Propagation
Se=—aee T 4,

error

w
Figure 3.20: The error on the output units plotted as a function of a wcigh\, w .ll.l the ne'lwork.
When the network is at point A, the error can be decreased a little by slightly increasing the
value of the weight. On the other hand, a large change might put the network at lhe_ pmr}t
C on the other side of the valley where the error is larger. The simplest way to avoid this
problem is to make the weight changes fairly small.

output layer

hidden layer

al ° b3 (bias unit) n2 o input layer
Figure 3.21: To start the training the weights will start at 0. The input unit values are | and 0, n3a
nd are 0.5. The target for n4 is 1.

Pattern Recognltlo" n
78

1.0. In order to raise the value of the output unit there are two
< CIOSH;E‘N- (}lf weights coming from nl. n3. and M EIA) be INCreaseq
dmi) o done to increase the value of n4 is to raise the activation levelg
haud-‘ In this case, however, the only node that can have its activatioy
> icn3. The 01.h,3r nodes are frozen at values of 0 0Y_'~ Ru:smg ‘h_e ACtivatiop
level r.usef is rl];e-donf by raising the values of the weights]cudmg into n3. First, we wil|
IEV‘: o 2 '?tn[he weights leading into n<. The back-propagation formula to modify thege

look at raising e ks

weights consists of several definitions:

n4 will be a littl
things that can be
The second thing
of nodes that feed into 1

e = (e — ox) [(nety) Q3.1
flnety) = ok (1 = ox) 3.2)
Awjr = 7dx0; 3.3)

The quantity dy in Equation (3.1) is called the error signal. . is the target value for unj k,
and oy is the actual activation value of node 4. Note that the difference (#, — o) determineg
the extent of the error and it is called the simple error. Large differences between what you
have as an answer and what you should have will result in larger corrections being made to
the weights. The f’(net,.) term given in Equation (3.2) is the derivative of the activation
function, f, with respect to nety. It comes as a consequence of the derivation. Finally, in
Equation (3.3). the change to the weight Awy. that goes from a unit j in a lower layer to
unit k in the output layer is the product of d, o;, the activation value of the unit Joand a
small constant 7). that controls the learning rate. This constant must be relatively small so
that the error decreases. In our XOR example we will choose 7 = 0.1 and then the weight
changes we compute are as follows:

dag= (1 —0.5) x0.5x% (1 — 0.5) = 0.125,
Awning =0.1x 0.125 x 1 = 0.0125.
Atpans =0.1x0.125x 1 = 0.0125,

Atnzns = 0.1 % 0.125 x 0.5 = 0.00625,

Awnangs = 0.1 x 0.125 x 0=0.

N . p : ;
oW, without making any weight changes just yet we proceed to the hidden layer units and

Ic;:;u!;lee»:;gft{changes for ?velg?lts !eading into these units. In this way, we will raise or

i hiz‘;on lof units in this hidden layer. To do this, we need to give some error

et en layer units. If we now let 6, be the error found for the kth unit in the
yer (or any layer above), then the d; term for the Jjth hidden unit is:

o.f = fl("”j) Zékwjk.
k

The Wj are the wej i
- bejtw o um:vielhg]htt:eﬂ;:t lea';i Ifrom unit] to the output units. The change in the weight
o Yer below the hidden layer ang unit j is Aw,;;, which is given

Aw;j = 16;0;.

3.4 Back-Propagation
S ——

9

Recalling that the error signal for nd way 0.125,

! * and that the weight betwee f i
10, &3 for the hidden unit n3 will be: S e betweert Y and nd s

stil
s = 055 (L= 0.5) x 0,125 x ¢ = ¢
and the weight changes will be:
Qi =01 0x 1 =0,

Atz =0.1x 0 x 0 = 0,
Qs =00 x0x 1 =0

All the network weights can then be modified by these amounts according to:
Wik & wjn + Awjyg

If the same pattern is now input to the network again, nd4 will be 0.507, which is of course
a little closer to the correct answer.

The above method is called the “online™ or “continuous” update method because
changes are made continuously as each pattern is input. Another method for doing weight
changes is to collect all the weight changes for all the patterns in the training set and then
do them only once for the whole set instead of once for each pattern. The advantage to this
method is that less arithmetic needs to be done, but there is a disadvantage to this because
then you may need to make more passes through the training patterns. On large problems
this second option is usually better. This second option is called the “batch™ or “periodic”
update method.

Another important consideration when doing weight changes with the periodic update
method is that for some pattern sets like the XOR problem all the weight changes will
cancel out if all the weights start out at 0 and the result is that no learning takes place.
This can be solved by starting out the weights with small random values in the range from
about =1 to +1 rather than starting them with 0. The best range of starting weights to use
varies from problem to problem and may be larger or smaller than this range. In prac-
tice, back-propagation networks are almost always started out with small random values
for the weights no matter how the weight changes are managed because this will speed
convergence.

3.4.4 Speeding Up Back-Propagation

With 7= 0.1 and starting each weight at 0 and using 32-bit floating point weights, it requires
25,496 iterations through the pattern set to train the network to within 0.1 of its targets.
With 1 = 0.5 it requires 3,172 iterations and with n =1, it requires 1,381 iterations. All
these values are much too large to be acceptable for a problem as small as this one. By
employing a certain trick it is almost always possible to make a network converge much
faster. The trick consists of using a different Aw, we will call it Atwperrer, that is equal to
the Aw calculated for this weight plus o times the value of the Aw that was obtained the
last time the weight was updated. In equation form this is:

AWperter = Aw + CkAw,;reuwmchnngev

//Panern Recognhlon n
// —\
d a “momentum term” because it keeps lhc.pm.ccxs movip
calle «Tl e about 0.9. Using the best combination of 1) ang
T,VP’,‘TL;;" under 30 iterations.® At this time there is no theg,
. and o for a given th!em' but after you acquire SOme
you can usually choose some reasonable valueg
a reasonable guess for 1y is around 1/, ¢

This second extra term 1S
t direction.

in a consisten .
« the XOR problem can be sl
that will give the best values for 7/ -

rience with different types 0.2 prol s YO
b a problem with n patterns.

fairly quickly. For
2/n. Jaree number of methods. both simple and complex, have been dcv»iscd 10 speeq
o v'erynd;gau:inn‘ Perhaps two of the best are Rprop []72'. 173 und» QLIICkp'“p 137),
LJP ':’“‘Ctkw;;]r“i :ary the learning rates automatically for each weight as training goes on,
oth of

3.4.5 Dealing with Local Minima

From time to time & network may get stuck in a local minimum and be unable to learn the

desired answers. There are not yet any thoroughly researched methods on how best to kick
f a local minimum. However, one simple method is to

a back-propagation network out 0! B
assume that this problem has occurred because weights that are positive are too positive

and weights that are negative are too negative. Therefore, one simple solution is to take
weights that are positive and decrease them by a random amount while weights that are
negative can be increased by a random amount. This method can often take a network out
of a local minimum.? Another method to escape a local minimum is to simply add one or
more hidden units to the network. Ash [4] reports that a method he used for automatically
adding one node at a time always found a solution for the problems on which he tried the

method.

3.4.6 Using Back-Propagation to Train Hopfield/Boltzman
Networks

Fi p— ’
ligure 3.22: Using back-propagation to produce a network with symmetric weights.

It is a simy ;
works witl:)l:ymmxz:i?ﬂ::tfha yersion ",f back-propagation to produce the kinds of net-
ure 3.22 we have a two-la; at are used in the Hopfield and Boltzman networks. In Fig-
a pattern on the input | ver network with the same number of units in both layers. Given

Put layer, we will want to produce the same pattern on the output layer.

*Various other
changes ¢ i
*Unpublished research b;m dlgee;:t‘!:;;jwn to around 6, See [239].

35 pattern f‘fﬁcﬂ"i}io" and Curve Fitting 81

Figure 3.23: The network in Figure 3.22 can be transformed into a Hopfield/ Boltzman type network

‘There is one trivial solution to this problem that needs to be eliminated. When input unit |
is on we can turn output unit 1 on just by having a large weight from input unit 1 to output
unit 15 all the weights from the other input units to output unit 1 can be zero. This solution
is not acceptable, so to eliminate this possibility, we can either freeze the links from 1 to 1,
from 2 to 2, and so forth at zero or eliminate the weights altogether. Now, to enforce the
requirement that the weights be symmetric, the weight from input unit 1 to output 2 will be
(he same weight as the weight from input unit 2 to output unit 1, and so on. This procedure
also then cuts the number of weights needed in half. Then, whenever we modify the weight
from output unit | to input unit 2, the weight from output unit 2 to input unit 1 is contained
in the same memory location so it is modified at the same time. While we started the prob-
lem thinking of it as a two-layer network, this resulting set of interconnections can also be
viewed as a Hopfield-style network as shown in Figure 3.23. In training the network, you
can use either the traditional back-propagation activation function or a linear one.

3.5 Pattern Recognition and Curve Fitting

It is important to keep in mind that when back-propagation is applied to a pattern recogni-
tion problem the algorithm will try to construct a surface that will separate the input data
into the correct classes. We will now look at a few examples to illustrate the surfaces that
are formed and also note that back-propagation can approximate real-valued functions as

well.

3.5.1 Pattern Recognition as Curve Fitting

The XOR problem is a discrete problem because the input and output values are all integers.
As such, it does not make sense to try to find XOR of (0.5,0.5) or XOR of any other
combination of real-valued inputs. However, if we neglect the fact that such combinations
are undefined and go ahead and plot the surface, z = XOR(z,y),forz=0to landy = 0
to 1, we get the surface plotted in Figure 3.24. The network created a valley that runs from
(0,0) to (1,1) to solve the problem and the points (0,1) and (1,0) overlook the valley.

In Figure 3.25, we show how a 2-1 network divided up the space for the eight linearly
separable points in Figure 3.1. In part (a) of the figure, the line separating the two clal'us
is on a sigmoid-shaped slope at a height of 0.5. Part (b) of the figure shows a cross section

of the slope.

Pattern R
attern Recognition 3.5 Pattern Recognition and Curve Fitting

1.0 r 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 F0.2
g 0 -0
00 (1,0) 0 02 04 06 08 10
(b)

(a)

Figure 324: On the left in p:
function of z and y. There is 2 wi
section of the surface that runs from (0,1) to (1,0).

art (a) is a contour plot of the XOR function giving its height as a
de valley between (0,0) and (1.1). On the right in part (b) is a cross

1.0
1.0
0.8 0.8 A
0.6 0.6 1
g rTTTT
04 04 6Bg A
0.2 0.2
0+ T T T + 0
0 05 1.0 15 20
(b)
Figure 3.25: A 2-1 back i
cight linearly Ao network produces a sigmoid-shaped surf: Figure 3.26: Thes
. separable points. The z = 0.5 T , surface to separate the " ¢ These are three different ways i
section of the surface from (0, 0) to (2,-2) contour line is shown in (a) and part (b) shows a cross ::Odsltv:ld: up the space using the 12 :or‘:l?n}:;:-?;e:ezﬁ:;m ZT‘H b]:ok-pmpagmion Hetworks deciigd
,~2). etworks will prod ivisi o points. If you run a largs number of tisls,
(b) and produce the division shown in part ivisi
: (¢). Note that in (c), the network made a laprgc (:r):'ahznw ctl:rl:::‘:: :;vhltﬂ::: l‘;O‘::WAT 'l.u”l
| of class A (less

than 0.5), despi
- despite the fact that there are no examples of class A nearby.

Pattern Recognition

g,////
that different 2-4-1 networks decided

ift nt A o 4
;mfﬂlci':]e‘“h separable points found in Figure 3.4 In o)
e at meet near the center of the space

In Figure 3.26, we show three

jven the |
. . space given .« of B points th
divide the patte ¥ » lines of B points . S (e
cases the networks tend to se€ two . petween all three solutions. 1f a very large number of
r differences is likely to find & mapping thy

however. there ar¢ rpajo e e
data points Was available to r:
would fit the data very closely.

network. the network

g Real-Valued Functions

pagation to problems w here the input
it is also possible to use back-propagation for functiong
real number. For functions w ith output valueg
¢ of 0 to 1. the most common solutionis (o

3.5.2 Approximaﬁn
In most instances in this book we
however,
and outputs are oorl, I
where the input and output values .Lan be ?ny
beyond the range of the standard sngm_md s rang
make the output layer activation function linear. -
Funahashi [48] has proved that three-layer feed-forward networks can approximate any
tirl::ous mapping to any degree of accuracy and Hornik et al. [70] ha\-e proven that they
z(:::: roximate an arbitrary function and its derivatives to any degree of aceuracy. Leshno
et aja‘[J{JOO] extend the results to show that continuous functions can be approximated if and
only if the hidden layer activation function is not a polynomial.

will apply back-pro|

35.3 Overfitting

Figure 3.27 shows an example of how backprop can overfir a function. The function to be
fit is the line, y = z + 1 and in the plots this is the straight line shown. The training data
consists of seven points that are slightly above or below the ideal straight line and these
points are marked with an asterisk. In real world applications it is normal for data points
to fall above and below the best line and such data is said to be noisy. A test set was made
of 301 points along the ideal line.> The network chosen was a 1-3-1 network with a linear
output unit. After 2,700 iterations of training the fit is quite close to the ideal line, but as
training continues the network begins to overfit the data by bending its solution very close
toall the points. Notice that while the error continues to go down on the training set, the test
set error goes up. Test set error is a much better measure of the performance of a network
th‘ag thg training set error; for serious applications you need a training set and a test set. To
minimize overfitting behavior you should have many more training patterns than weights.
One way to do this is to use as few hidden layer units as possible. There are other ways to
deal with this problem as well.

3.6 Associative Memory and Generalization

c“:‘fnclg’sf:";msm of hum behavior is that as people gather together a number
syibol Pl‘omsingpap :’g‘c:"" or objects, they generalize about them. In the traditional
ally develop expliit li'l to artificial intelligence the theory has been that people actu-

Plcit rules about the phenomenon or objects. Furthermore, it was generally

5 Using points along the ; ine i
g the ideal line instead of more noisy points is unrealistic of course, but easy to do.

iative Memory and Gener
85

2,700 18,000
e —

i 2u 50,000
. L ! . k 1

0.4
0.3
error ().2

test

0.1
train

0‘0 T T T T T 1

0 10, 000 20,000 30,000 40,000 50, 000
iterations

Figul-e 3.27: The fit for the seven points with a 1-3-1 network at 2,700, 18,000, 25,000, and 50,000
lterations. The graph at the bottom shows the error for the training set and the test set. The minimum

on the test set error was at 2,700.

SR

Pattern Recognmon N

s in something close to a von Neumax?n Style ar.
assumed that people then & Chapter | and the idea will be developed fl;rfh?r 1N the nex
chitecture. We noted th.xs int F:ve will show how neatly ncur:.ll nemor. s can g_er{eralize
and later chapters. In this Secu; n some elementary reasoning without using explicit ryleg
to give rulelike behavior and do s e neural framework it is the way itemg are

5 th .
chitecture. In . e
and a von Neuma:[:l leleesa;se 10 generalization and some simple reasoning phenomena_
i at give
stored in memory

Neural networking rese: chers believe these methods are more rea listic than the traditio,
. o

symbolic approaches.

en used these rule

3.6.1 Associative Memory ' o
iew the XOR back-propagation nelwo.rk m(rodu‘ced in Su.n()‘n 34 h. that,

One way w'mw i tes the value of the function. however. another way to view it
i c'omfhua[e ives the contents of a memory location when it is given ap
is as emory, a device ngm this perspective it is quite similar to a memory reference
3 (t}}c e p:l[!;f:a)j von Neumann style computer, however. \tvl.len a n?ura] network
e acon;erem'eves memories you get some interesting additional effects. Neurg|
::wnoo:ky:;:e: :/nay to implement an associative memory. (There are olhér ways as well,)
An associative memory is one that, given a stimulus pattern, prqdqces a responsé pattern or
patterns that have been associated with the stimulus. An associative memory differs from

S N, et of sti s pat-
the von M comp memory because an ordered set of stimulus pat

terns (addresses) is not used and because multiple answers are possible. It is also different
in that it can give answers to addresses that are only similar to addresses that it has seen.

1010 101 100000000000 01000
1010 010 010000000000 11000
0101 101 001000000000 00001
0100 010 000100000000 00100
1000 101 000010000000 00100
0101 011 000001000000 00001
1010 011 000000100000 11000
0101 010 000000010000 00011
1000 000 000000001000 00100
0100 000 000000000100 00100
1010 100 000000000010 01000
0101 100 000000000001 00001

mafég fdﬂa&maﬂ associative memory. The first four bits represent: from Chicago, from
Democrat, 2 Rﬂpﬂ:ll‘l. s fan. The next three positions represent whether or not the person is a
These fist 19 ity wil?ab.: and‘ likes lemonade. The next 12 bits give each person a unique name.

e p (rather like an address), The last 5 bits will be the output

of the network and represen] ,
Yankees fan, and is 3 Jes fml.wmmﬂ or not the person is a Sox fan, a Bears fan, likes tennis, is 4

o illustrate A »
the inpu (addu::)m‘:fﬂfie lgl:-s of an associative memory we consider an example where
and the first 7 pyy tepresent :s' The last 12 bits Tepresent names for 12 different people
Properties of these people, Bit | is 1 when the person is from

e

A iative Memory and G
36 Ao Y

Chicago. bit RET whcp !hc»pe@on is from New York, bit 3 is | when t
Chi Cubs baseball fan, bit 4 is | when the
We let bit 5 represent whether or not the person i
or not the person is a Republican, i
jemonade. The output patterns consist of 5 bits. Bi
is a Chicago White Sox baseball fan, bit 2 fepresents that the person is a Chicago Bears
football fan. bit 3 represents that the person likes tennis, bit 4 represents that the person
is a New York Yankees baseball fan, and bit 5 represents that the person is a New York
Jets football fan. These inputs and outputs for 12 people are shown in Figure 3.28. The
properties of the people involved show the patterns you would expect: people from Chicago
are never fans of New York teams and New Yorkers are never fans of Chicago teams. Half
the Cubs fans are White Sox fans. Three out of four Mets fans are not Yankees fans. All
Cubs fans are Bears fans. All Mets fans are Jets fans. In addition, Chicagoans and New
Yorkers who are not baseball fans like tennis. Bits 5. 6. and 7 have little correlation with
the lust 5 bits, except Republican Cubs fans are also Sox fans. It is easy to train a two-layer
network to remember these patterns,

Itis not interesting that a network can learn to recall these facts. The interesting part is
what happens when you use input patterns, or addresses, that the network has never seen
but which are very similar to patterns it has seen. For instance, give the network a nameless
person (all name bits = 0) from Chicago who likes the Cubs:

he person is a

1010 000 000000000000,

We get:
0.4 0.88 0.23 0.03 0.02.

The network effectively compares its input with the similar patterns it has experience with
and returns a pattern that is close to what those similar input patterns would have produced.
We can take these output values to be rough estimates as to whether or not a Cubs fan from
Chicago will like the Sox, Bears, tennis, Yankees, and Jets. The results indicate that there is
some chance that the person likes the Sox, a high probability that the person likes the Bears,
and little or no chance that the person likes the Yankees, Jets, or tennis. This is a rather
pleasant surprise considering all the network did was to store “values” at “addresses.” If
we use Democrat Cubs fans we get:

0.11 0.88 0.14 0.01 0.02.
If we use Republican Cubs fans we get:

0.77 0.92 0.13 0.05 0.02.
For Cubs fans who like lemonade:

0.46 0.87 0.17 0.01 0.02.

Evidently, from the examples it has seen, the network has “come to the conclusion” that
Republican Cubs fans also like the Sox while Democrat Cubs fans do not.

I—

Pattern Recognitiop, u

88
nse (o a nameless Mets fan from New York:
respons

a look at the network’s

We take
0.01 0.02 0.

18 0.26 0.85.

ust possibly a Yankees fan. but no fap of

. ainly a Jets fan, J ' o
meaning that the person is cenAlso' - nameless New Yorker who does not like the Mets,

i the Bears.
tennis, the Sox. or the s
makes the network think of tennis: 7
0.03 0.05 0.80 0.11 0.26.

m did during training was to notice certain regulyy.

i s sees “from Chicago™ and “{ikeg

i i tput sequences. When it 1OW “fic 1 .

ities bet\wt'agn the lvnPqu;rilfe‘:“mPe Bei?rs" and inhibits “likes tennis. and so forth. The ne.

the Cubs,” it BC‘l;:‘[;‘Sv a Republican. Democrat, or lemonade Illker had no correlation with

= fo;"d lht;;n lﬂ:e network is behaving as if it had explicitly come to the conclusion
being a Bears fan. S

that the following rule applies:
IF

What the back-propagation algorith

the person is a Chicagoan and
the person is a Cubs fan
THEN that person is a Bears fan,

while all it was doing was trying to look up a value at an aeress. We may say that networks
like these have the important ability to generalize from their experience and come to know
the important characteristics of a class of objects. Notice alst?. that the netw.ork came up
with, we might say, fuzzy sorts of rules, like, that the typical Chicago Cubs fan is sometimes
a Sox fan and that a New York Mets fan is not usually a Yankees fan.
One problem with the linear pattern classifier network and the nearest neighbor algo-
rithm is that they assume that there are specific places at which to divide up the space
between pattern classes. In real life problems the divisions are not always so easy. For in-
stance, one highly qualified loan officer may decide to grant a loan where another equally
qualified one will deny it. In pattern recognition terms, there is a region of space where
the decision is uncertain and it is unrealistic to find a hard division between two classes.
However, back-propagation networks produce smooth surfaces that will minimize the over-
all error and then the numbers that come out of the network correspond to an estimate of
probability. This shows up in the above network’s ability to estimate whether or not Cubs
fans are 'Sox fans or that Mets fans are Yankees fans.
gen:;zilsi::?;.:a:}l; t!o note, however, that back-propagation n_etworks do not always find the
ble points wsed chZ? ex%e'ct them to find. F(?r Instance given the 12 nonlinearly separa-
tree diffrent divp mgf ll‘gure 3.26, three different runs of back-propagation produced
ple safeguard in usirllonr:elt)wg ispace th?’ no human being is likely to produce. One sim-
same unknown patteris to th:r: ;(S):zl::u‘.}ia n}lmber e sul?m} tthe
analog to collecting a sef of opinions fi stication, and then average the results. This is the
doctors) and weighing them. For 3 ma[;’]"m ﬂ‘number of humar'l experts (say, for instance,
and Cooper [150, 2 ematical analysis of this see the article by Perrone
Of course, i ;
People or provide people with an enti e!xpe‘ct may actually find better generalizations than
ely different perspective on the situation. Remember,

too. that PL‘QPIC have often produced incorrect generalizations, such as that the Earth is flat
or that the [undn-mcnvl:ll elements are earth, air. fire, and water. The scientific method of
ohserving data. forming a theory, and testing as many other cases as possible is designed
(o minimize such errors. It cannot be emphasized enough that backprop is not capable of
uncovering every sort of regularity that can be found in a set of data. It has very specific

Jimitations. For a discussion of these limitations and some ways they can be overcome

see [19]-

il
Figure 3.29: A rough picture of the energy landscape near the four Cubs fans. The valley on the left
contains the two Democrat Cubs fans and the valley on the right has the two Republican Cubs fans.

In the above sports example we chose to emphasize the memory lookup capability of
anetwork by declaring the input to be an address and the output to be the contents of the
address. Itis also possible to use back-propagation to produce pattern completion networks
for use with the Hoptield and Boltzman recall algorithms. We can put all 24 characteristics
of cach sports fan on the input layer of a symmetric network and require the same pattern
to appear on the output units. After training, we can put part of a pattern on the input
units and the network will try to complete the pattern on the output units. A network that
simply tries to reproduce its input pattern on the output units is called auto-associative. (A
network can be auto-associative without being a Hopfield network.) We can also use the
Boltzman machine recall algorithm to complete the pattern. For instance, we may give the
recull program the pattern:

LOT0 000 000000000000 00000

and through random updates of the Boltzman machine relaxation algorithm, the system
will settle into a minimum having the characteristics of one of the four Cubs fans. If the
u:uuling is done enough times, the network will recall the characteristics of all four Cut.)s
fans, Thinking in terms of computational energy, the four Cubs fans occupy a valley in
the 25-dimensional computational energy landscape. Within that valley is a subvalley for
!he Wo Republican Cubs fans and a subvalley for the two Democrat Cubs fans, This is
illustrated jn Figure 3.29. Each subvalley has two minimums in it. Similar valleys exist for
Mets fans and tennis fans.

B

Pattern Recognm“n "
7’\

w .
i sentations
ocal and Distributed Repre —

. ects that can be useq in neural networks, They .
resentations IL.vr “h'LLh’ term [Hmtllwl distributed processing is deﬁve
SSMH'“OHSI T ‘hu!ed representations have the importan i

s Dl\'[ln"\‘“ Jook at the differences between logy) and

Sy % f_\:‘;ir\[glance. the dmnbglcd and local representaon
entations in detail. / o o “imstances the differences are not ks

rL.erfél’r;lkllllt‘fl is the Waltz and Pollack activation Network

n‘: Jiﬁk‘rem and complex: concepts such ay hunting,

. aspecific node. By way of contryg

362 L

There are (wo rep
Jocal and distributed repre:
from the distributed repres: u
to generalize from patterns &
distributed repres
pear quite different. vet unde
* A good example of 4 local repr
i jon 2.4. In that networ
o, b ;. and deer are each allocated i
e S ion. we might code the pattern tor a deer. notas a single iy
using a distributed represem.mod.wmlc gL codTEJaire b7 e, oul a8 4 single o
activity over & series
but as a pattern of activity

could be:
000000011 000 111010101 0.
f these 22 units represents a characteristic of animals in general. Some of these
fmh,; :m-em 1; color. size. has four legs, has two arms and two legs. has a tail, and go
:m;f this &gistributed type of representation is used by people. we would expect there o

on. N o . gl L. ; - ! ;
be many more than 22 such features. m‘cludmg po.smbl_} a pattern representing a mental
picture of the animal, a pattern representing the sound of the name of the animal, a patterp
representing how to speak the name of the animal. and so on. Each feature represents a
small part of the animal and in a distributed representation each small feature is called 5

microfeature.
chimpanzees: 111 000 000 111 000 000 000 O
gorillas: 000 111000 111 000 000 000 0
orangutans: 000 000 111 111 000 000 000 0
dogs: 000 000000000 111 111 000 0
cats: 000000000000 111000111 0

Figure 3.30: The distributed representations for five animals.

An i{nponam aspect of the distributed representation is that it is quite easy to represent
many ﬂm'mi'lls by ju§l listing their characteristics in a vector. For instance, we might list the
fm’:gs of chimpanz s. gorillas, orangutans, dogs, and cats as shown in Figure 3.30.
producin ne;f;gmle,"‘f‘“"“ 1 2 program it is quite easy to add new animals simply by
jam—" sgary iy es listing 'heerhfiractenstlcs. This is in marked contrast to what would
animal added, 3 neewﬂwmory Was using a local representation. In that case, for each new
conneclingthéanima]m’fiueI would need to be created and links would need to be created

I Giflerenes between e e r> "
above, all woylq pe we];v::wt::e;w&rewesenwiovs were as clear-cut as it sounds from
Obvious. Suppose we haye 5 et Crehare situations where the differences are not 50
800l and orangutan plu noges for :: shown in Figure 331 with nodes for chimpanzee,

¢ir 22 characteristics as shown in Figure 3.30. The

3.6 Associative Me(ng[yfng Generalization 91
chimpanzee gorilla orangutan

19202122
Figure 3.31: A nctwork that seems o use local fepresentations, but if you light up the chimpanzee

unit and apply the interactive activation algorithm to the network, a set of feature nodes (1-22) will
also come on so “chimpanzee” ends up looking like a distributed representation after all.

network uses the interactive uctivation method. If we activate the chimpanzee node then
units 1, 2, 3, 10, 11, and 12 will come on giving, in effect, a distributed representation in
the network. Thus, distinguishing between local and distributed representations can be a
problem at times.

3.6.3 Reasoning within a Network

We can now look at the ability of distributed representations to do some elementary rea-
soning. We will use the data in Figure 3.30 about chimpanzees, gorillas, orangutans, dogs,
and cats and we designate the 22nd bit as indicating whether or not the animal likes onions.
The data at the moment shows that none of them do. However, suppose that someone tells
us that chimpanzees do in fact like onions. As human beings, we would also suspect that
gorillas and orangutans also like onions because these animals are all quite similar. Dogs
and cats, however, are very different from apes, so knowing that chimpanzees like onions
will not raise our expectations about dogs and cats liking onions by very much, if it raises
them any at all. If we later learned that gorillas and orangutans do not like onions we would
file that away while still leaving liking onions as a unique characteristic of chimpanzees.

To demonstrate that a network can also do the reasoning process described above we
will first train a network using back-propagation to remember the characteristics of the
five animals in Figure 3.30. Column | of Figure 3.32 shows the activation values for the
“likes onions™ unit and they are all very close to 0. Now, to have the network learn that
chimpanzees do like onions, we retrain this existing network of weights with only one
pattern rather than with the complete set of five patterns:

LLE 000 000 111 000 000 000 1

This pattern is the same as we had before for chimpanzees except in this case we have
chimpanzees liking onions. The network will use those units that are 1s in the input layer
{0 turn on the “Jikes onions” unit in the output layer. Column 2 of Figure 3.32 clearly
shows that chimpanzees like onions and that orangutans and gorillas register an increased
r‘rbub“ity that these animals like onions. There is very little indication that dogs and cats
1ke oniong,

- Pattern Recognmun "
2’/////_’“[135 onions™ "l!kcs onions™
“ikes after after learning
onions” learning that that gorillas ang
m.er chimps like orangutans do noy
initial onions like onions
training
0.96 0.68
5 N
chimpanzees 8_'35 047 ::3;
gorillas 0.02 036 0,04
orangutans 0.02 0.05 9
dogs 0.02 003 o
cats

how a network can $0 some elementary reasoning. The sligh Changeg
s how a)

Figure 3.32: This data Shuwhanoes in the weights from the bias units.

for dogs and cats are due to cl

" oorillas and orangutans do not like onions by train;
Wecanmon o Tef:re:rzg:\alsh;:gg‘;el:l?; orangutans. Column 3 of Figure 3.32 shm:f
hon [m’ a[’[[ehr:se.sc:;:natesafor gorillas and orangutans liking onions has been lowereq o
:;hejor:SO.l.-wme the rating for chimpanzees remains quuerm gh] B

The automatic reasoning ability of the above r}eF\\'or}x was made possible by the fag

that each animal was represented as a pattern of activity .dlsmbuled over a number f’f units,

Knowledge about one animal spills over to the other anm@s to the extent that their active
input units overlap. The more the overlap the more the spi 1.10\'er. o

The above demonstration made use of another interesting property of this type of net-

work. All the patterns do not necessarily always have to be added to the memory all 4

once. They can sometimes be added one at a time and up to a certain point they will not get

in each other’s way. This is possible because when a new pattern is added there are many

weights to be changed and therefore each weight only needs to be changed by a little bit

to store the new pattern. In addition, the total effects of all the small changes are likely to

cancel each other out. For these reasons, new patterns can often be added without destroy-

ing the old ones. There are instances, however, when storing one extra pattern will destroy

lhg facts in the original network. With only 22 units for this example, the changes to each

weight Were still fairly significant. However, by adding one fact at a time, eventually a

:::‘::nrk W'Il]l;':"fh 2; point where old patterns get weaker and weaker and finally the old

S Wi ost forever.

The ,fa‘ff l;'s‘tm parallel distributed networks the generalization of knowledge comes

Y Justasa consequence of storing and retrieving knowledge from a network has

made some researchers think that this is a better model of genera]izalfi;on than the symbolic

approach of constructing actual rules. These ; 3
expel - Ihese networks pr i 2 without
the expense of producing actual rules, works produce rulelike behavior

aut

3.7 Applications of Back-Propagation

To illustrate tne |, fi
the early @Plicatiiﬁsuge:f ;;f back-propagation networks we will now look at some of
¢!l as mention 3 few experimental systems. In addition to the

—

E
i
I

3.7 Applications of Back-P
37 Applloations of Back Propagetion }
applications we mention here, there are very many
made (0 very many types of problems that can e
recognition.

applications of huck-pmpug;\(iun being
solved by doing a single step of pattern

3.7.1 Interpreting Sonar Returns

One experimental back-propagation system by Gorman and Sejnowski [52, 53] was de
signed to classify sonar targets. The two targets used in the cxpcl"imcnl we;'e.jl >n>\ ‘I'“I“:\ lt"-

der and a cylindrically shaped rock. Both targets were about five feet long u‘nLl ;n‘)llh&i‘::

placed on a sandy ocean floor. Sonar returns were collected from the ubbiecm ata r'\:;
of 10 meters and from various angles. Daty for each signal was prcprucé\\c;l ‘in‘u I‘l\'l?\'
ner thought to be similar to how human beings hear sound patterns (see lﬁlil) and |hc;1 it
was normalized to fit between 0.0 and 1.0.9 There were 60 input vuiuc\ tl“hc;c atterns
were used as input to networks with 0, 2, 3, 6, 12, and 24 hidden unit\\.l'.l'hc n;np[l’;l luyclr
consisted of two units, one for the rock and one for the cylinder.

Aspect-Angle

Aspect-Angle
Independent Series ' 4

Dependent Series

Number of Average Average Average Average
Units in Performance Performance Performance Performance
Hidden Layer on Training on Testing on Training on Testing
Sets Sets Sets Sets

0 89.4% 77.1% 79.3% 73.1%

2 96.5% 81.9% 96.2% 85.7%

3 98.8% 82.0% 98.1% 87.6%

6 99.7% 83.5% 99.4% 89.3%

12 99.8% 84.7% 99.8% 90.4%

24 99.8% 84.5% 100.0% 89.2%

Figyru \?.33: The results of two series of tests done by Sejnowski and Gorman to train networks to
distinguish between the sonar returns from a metal cylinder and a cylindrically shaped rock.

Two series of experiments were performed, one set using angle independent data and
another using angle dependent data. The results are shown in Figure 3.33. These results
were averaged over 130 networks for each number of hidden units. The performance in
this series of tests approached 100 percent on the training data and 84.5 percent on testing
sets that the program had not seen. Three-layer networks with 12 and 24 units gave the
best performance. An analysis by Sejnowski and Gorman found that this relatively poor
performance was due to the fact that there were examples of patterns used in the testing
Set that were not found in the training set. In addition to doing the back-propagation anal-
ysis, vlhe authors used another technique to estimate the performance of a nearest neighbor
classifier and found jt would be 82.7 percent correct on the unknown patterns. In the angle

R, |
f B‘_'tkprop networks can accept any real values as input, however, the best results come when the magnitude
of the inputs is more or less I

Pattern Recognmo" "

94

etworks performed near 100 percent i the "’”‘i_“i"g set apg
ts. Again, performance reached a peak “-II 12 hl.dden units,
.lh.e h;man subjects tended to pe{form from slightly better
rworks but there was less testing done with the h‘-'man

dependent series of tests Ih:g r:e
up to 90.4 percent on the !e S

In tests on human subjects.
than to slightly worse than the nel

subjects than with the networks.

3.7.2 Reading Text

£ O

hidden layer

Figure 3.34: The general structure of NETtalk. There are seven letters in the input layer. In this case,
the first three letters are blank (). The output layer codes for the correct pronunciation of the middle
letter of the seven. The left set of output units represents the identity of the phoneme and the right
set codes the stress field. In effect, the network has to learn to give the proper response for the input
letter *f” given the fact it is surrounded by three other items on each side.

Another experimental network, this one researched by Sejnowski and Rosenberg, is known
as NETtalk [199]. NETtalk consists of a network of processors that learns to read aloud.
The program has been interfaced to a speech synthesis system. With the speech synthesis

. systgm e}:gaged, the program babbles like an infant to start with, but after 16 hours of
practice it learns to read aloud at the level of a 6-year-old child. The general arrangement
of NETtalk is shown in Figure 3.34. It is a three-layer network where the input units contain
a seven letter portion of a word (called a window) and the output units contain first, a code
for the proper pronunciation (the phoneme) for the letter in the middle of the seven input
‘]:!'Ee;;r anq second, a sl:'es;s field for the middle letter. The stress field takes on the value
N, faupanF! sltes;, 2" for secondary stress, “0” for unstressed, “+” for rising, and “-
- 'lhemgﬁmlﬁvh-“: .34 shows the network looking up the pronunciation for the “” in
ik e kcharactexs on the input layer are blank. For patterns
2 NETal produces the correct phoneme 94 percent of the time. For patterns

Waltz aid i
y sﬂnﬁ,}g;vt:l I:2180 attempted this pronunciation task using another method
em ealled MBRualk is described briefly in Section 7.2. Waltz and

S A
that perfect or near perfect results with the methods employed by NETtalk

f
1
[

lications of Back-Propagation
3.7 ApPICET 9%

, BRualk are not possible for several reys, ns. Firy i oy
::;lm»uic\. thert are also many wn-)rds with irr:gl:larFlrbL e these e jcun lcarm
xnow about unless it has been specifically told about them. Second, English has borrowed
any words I'rnn.1 other languages. Unless the system knows the language in which the
word originated it cannot guess the correct pronunciati
examples as targET versus RIET, piZZa versus fiZZy, and vILLA versus tortILLA

In addition to MBRtalk and NETtalk, Wolpert [264] has produced a system sim{ioler than
MBRtalk that he says “has a generalization error rate of less than 1/3 of that of NETtalk”
and this system is described briefly in Section 7.2, Another system for reading text aloud
is DECtalk designed by Digital Equipment Corporation. DECtalk was constructed using
conventional programming techniques and it js superior to NETtalk, however, DECtalk
required 15 years to develop while NETtalk was developed over a summer.

3.7.3 Speech Recognition

Speech recognition is another important area where back-propagation networks may be
useful. Waibel et al. [241, 242, 243, 244] have been working on the problem of training
networks to recognize spoken sounds. In one early set of experiments a specialized back-
prop network was trained to recognize the sounds, b, d, g, p, t, and k and the network
managed to get around 98 percent correct on a test set,

3.7.4 Detecting Bombs

One back-propagation-based system in actual use was commissioned by the Federal Avi-

ation Agency and produced by Science Applications International Corporation (see Shea

et al. [205. 206]). The system is designed to detect explosives in suitcases by quickly
scanning the suitcases in a normal airport environment. In particular, the object is to de-
tect unusual amounts of nitrogen in the suitcases because most ordinary explosives contain
large amounts of nitrogen. The system works by first bombarding the luggage with low
energy neurons. The neutrons are absorbed by atoms within a suitcase and the atoms then
emit gamma rays at various energy levels. Each type of atom will emit a characteristic set
of gamma rays which are measured and the results of the measurements are then submitted
10 a back-propagation network for analysis.

Percent Explosives False

Detected Alarms
linear discriminant 98.0 11.6
back-propagation 98.0 78

Figure 3.35: The explosive detection rates and false alarm rates for a linear discriminant solution
and back-propagation.

As in so many real world applications, it was not possiblg to get Peflef‘ detection.
Sometimes a bag with explosives will not be detected and sometimes a bag without explo-
Stves will be flagged as containing explosives. The goal in the project was to detect at least

Pattern Recognition

96
. : inimizing the number of
.t contain explosives while minimizing bl i false
ccent of the suitcases that ¢ o nat you can increase the probability of detec.
Mo systems In operation, every piece of

ractical aspect of such false alarms. i
::;mbu'tl;l:he cost of increasing lr;fn?:;]t;ernr;:)re detail and this l s Yery Hme cqnsuming_
is suspect must b ex‘ that were tried. a linear discriminant analysis system
0 maj",r appmz';c:l:e’ back-propagation network. Both prove(? to be equally
lassifier) and losives, but the back-propagation system did much better
bags with explos! St " were made at John F. Kennedy airport in October
tests d they gave the resultg

with simulated explosives an :
b actualsluggage o Iuggageame from a network with one hidden layer. Some
shown in Figure 3-

results ¢: Al i

p - \;/[iT:;S: four-layer network where the probability of a false alarm

expe:menlse;’;;eor:: percent he training required 14.000 to 20.000 cycles,
was decreas

age point, but U
whereas the three-layer netwo

There were tW!
(a linear pattern cl

0od at detecting
f! eliminating false alarms. Some

rk only needed 2,000 to 4,000 cycles.

375 Economic Analysis

s have been designed to do economic analysis ranging from stock mar-

f system: iti i
A number of sy g bonds, to loan underwriting. Kimoto,

ket analysis, to commodity futures analysis, to ratin; L5
Asakawa, Yoda, and Takeoka [83] report producing a stock market prediction system that
“showed an excellent profit”” On the other hand, White [255] attempted to use networks to
predict the daily rates of return on IBM stock and he reported that in the experiments he
tried, the networks have failed to uncover any predictable fluctuations. Refenes et al. [168]
report that neural networks perform better by an order of magnitude than classical statisti-
cal techniques for forecasting within the framework of the arbitrage pricing theory model
for stock ranking.

In another example of economic analysis, Collard [21] trained a network on commodity
futures data using a year’s worth of data. The network was then tested on another nine
months of data. Collard reports that, given an initial investment of $1,000, the network
would have made a $10,301 profit.

Dutta and Shekhar [207] have experimented with networks to rate bonds. They report
that their networks function better than the typical mathematical procedures used by bond
raters, but the networks do not always produce the same rating that human bond raters pro-
duce. They a]§o found that two-layer networks performed as well as networks with hidden
lzfers. Experiments dor'ae b_y Surkan and Singleton {225] found that three-layer networks
gmm bﬂ;t:r];h;nr ﬂ;s;nmn::anl analysis at rating bonds and four-layer networks were

deﬁfm?h [212 Pioced 8 network to do loan underwriting and he reports that “It is
Pmi“m’-“g d:; I8 percent increase in profit for its user, compared with the performance of
anglysis)." sion technology (a point scoring system based on multivariate discriminant

. MeCann [106
iy 1 used a recurrent backprop network to predict the highs and lows of the

ditional Perspective

sspagtioraiPorspectve g
3.7.6 Learningto Drive

In a project co}nducled by Pomerleau, Jochem, and Thorpe [160. 161, 162, 163, 164, 74}
pack-propagation networks have been trained to drive a car down inlerstal:; higk;wa \‘ um:.
and (o lane roads. :md'suhurban neighborhood streets. The project is called ALV[{iI:{ for
Autonomous Land Vt‘thlc. In a Neural Network and it is used to drive a vanlike vehicle
called NAVLAB. PiL.'l\erS. lrop\ a video camera on the vehicle are digitized to form a 30 x
32 input matrix. This is fed into a hidden layer with 4 units and then to a 30 unit o;ltp;ll
Jayer. The output layer um?s code for how hard the network should steer to the right or
left, The system learns to drive by monitoring the driving of a human being for about three
minutes. For cach different type of road a different network must be trained and the system
must monitor which network is giving the best results on how to drive. It switches between
nctworks as necessary to give the best performance. The higher the degree of confidence the
gystem has, the faster the system can drive. ALVINN has managed to drive up to 70 miles
per hour and has averaged 60 miles per hour over a 90 mile stretch of highway. Research
is now being done on getting ALVINN to handle more complex driving situations such as
intersections, off-ramps, and changing lanes. To do this the researchers are working on
dynamically moving the camera as well as narrowing its field of view so it can concentrate
on the important details of the scene.’

3.7.7 DNA Analysis

Lupedes” has trained a back-propagation network to predict whether or not short DNA
fragments contain codes to produce proteins. Its accuracy rate is 80 percent rather than the
50 percent obtained with conventional pattern recognition techniques. The network was
trained by presenting it with 900 examples of fragments that do code for protein production
and 900 examples that do not. Lapedes says that the network appears to have learned some
fundamental rules about genetics that may possibly have eluded biologists.

3.8 Additional Perspective

In this chapter we have looked at a few of the most common and useful pattern recognition
algorithms. For the most part, these algorithms were chosen because they will be useful in
later chapters. In particular, back-propagation can be modified to handle an amazing num-
ber of tasks. However, over the years a very large number of pattern recognition algorithms
have been proposed and used and it is not possible or useful in an Al book to look at any
more of them. Even though back-propagation is only a relatively recent addition there are
already an amazing number of variations on back-propagation that have been developed
and most of these give better results than backprop.

—
"Some of these details were taken from a Usenet posting in comp.ai.neural-nets by Dean Pomerleau, Message-
IB: <753213973/pomerlea@POMERLEA BOLTZ.CS.CMU.EDU>, Date: Sat, 13 Nov 1993 18:06:00 OMT.
More information on ALVINN and related research can be found in the Robotics Institute Technica) Report
WYW Page at http://www.cs.cmu.edu/afs/cs.cmu proj 1abhome.page.himl.
This report comes from Science News, Yolume 132, Number 5, August |, 1987, page 6.

PE—— e

Pattern Recognitj ‘
- 777779\& goExercises #
S | :
= 3.7 Program the Boltzman machine and Hopfield network relaxation algorithms.'" Use

3.9 Exercis! Il\c following patterns of the letter J and the number 4:

i -ooram show that & linear pattern classifier c;mno‘| L)I;{) the XOR l-‘l'hh‘ .
o “.nhl‘“[}“»‘”‘ll Jtpl‘:xvl:ll}c QOR outputs of +1 in one class and the XOR outputs of i
Jem, that is. it cannotF D

another class. Let the 0 outputs be - 1
d L > £ o il T oy rE
program determine W hether or not the following patterns can be clas.
{ ising @ progr !
2. Without using a f Hure

3.
linear pattern

sified correctly using the

input output :
i 2,25 .35 tratkie i b o "
1 groring the weights ina 25 5 25 matrix will be convenient or C programmers can use

100 :
000 =] malloc to create arbitrary size arrays. Run sn{nlluli«\m to determine how often the following
010 1 patterns end up in the global minimum as a function of how long the network stays at each
111 = | {emperature. In addition, vary the threshold value to see how it affects your results.

ayer backprop network uses ONLY the linear activa- 0000 0 00 0

3.3. Show that if a three or more I E

tion function that it is equivalent to a two-layer network. so that nothing can be gained in 00 000

terms of pattern recognition ability by having more than two layers if a network uses linear 00 0

neurons. This is particularly easy to show if you use matrix algebra. 00 0

3.4. Program the linear pattern classifier” of Section 3.1 and train it to learn the difference 00000 000

between an E and an F using the data shown below. After training, examine the weight
vector to see how the program discriminates between an E and an F. 3.8. Philosophical Question: s the concept of finding and getting stuck in a local minimum

applicable to other aspects of the world? For instance, do people, societies, and nations
get stuck in local minima so that they become incapable of change, even change for the
better? Could alcoholism be a local minimum? Are these valid examples and are there other
examples? If you think these are valid examples, then how do you get people, societies,
and nations out of a local minimum?

3.9. Use backprop to solve the XOR problem, then vary at least one of the weights to see
how the error changes. Plot the error for a wide range of values around the minimum value
found by the network.

3.5. In Section 2.1 the letter recognition algorithm looked for four different subpatterns in
each of nine regions and then applied a formula to determine the unknown. Now, program
the same problem but use the simple Euclidean nearest neighbor algorithm described in
Section 3:2. Use at least eight different patterns. Test the program with a number of letters
that are Q1stoned from their ideal shapes. If you programmed Exercise 2.1 compare those
results with the results you get here.

Another variation you may want to try is to collect a large number of patterns of just

tWo very similar hand-printed letters (for ins
S stance, E 2 4 p P y ot
and so forth). Use the nearest neighbor al e Eand F, Cand G, Pand R, F and P 3.11. Given the following set of weights for the XOR network shown in Figure 3.14, sketch

3.10. With the XOR problem, vary 7 and o and the range of the initial weights and see how
few iterations you need to solve the problem. To get reliable estimates, average at least 10
or better still, 25 cases for each parameter setting. If you are more ambitious, do the same
for as many different variations of the backprop algorithm as you have available. (Doing a
large number of simulations will take some time.)

database and use the other half x. }gomhm and put about half the patterns into the the surface the network found to solve the problem:
ba"’k'PmPﬂgalion e A a§ tEsl_(:ases. You can also repeat this with DSM and the § p !
gorithm described in Section 3.4. 7.1252470016 * from nl to n3
3.6. Starting with :
the netw i I 7.1284189224 * from n2 to n3
the units in this order: b, ‘;fkamelgure v the activation values shown there, update J -2.7686207294 * n3 bias weight
> d,a,b, ¢, d. Also try this series of updates: a, ¢, d. | -4.9701967239 * from nl to nd

? Available online,
1% Also available online.

Pattern R°°°Q"ition 0

100
TR
7 * from n2 to M
80217)
'4'96339?740 + from n3 to ™
10.9574527 « nd4 bias weight

_3.3010675907
. author made in drawing the line sepuruling:he two Classeg
nozsp[r};ep;;a‘ion networks did not make in Figure 3.21.
s - ¢ there are eight palindromes. bit slrirjui that re;!d the same
3.13. Within 6-bit bma_ry et 4y KU se back-;;mpagminn with two units in the hidden 5ok
i et oo l'eﬁllhgb-bn palindromes. Explain hox\ the network y orks,
- n;(:loyri;’drz?rgur::fhe network on all 64 possible 6-bit patterns. (Also see he
You will probal

next exercise.)

3.12. Give the assump
in Figure 3.4 that the bacl

always generalize correctly. For example. the data bejgy,

. : S S nonpalindromes. Use the patterns ang the
contains t_he eight 6-bit p;at‘:‘ﬁlglli;Elzsbzzrlzixopapga[ion ne‘mork \\.ilh n =05 and o =
LTS show_n e based version of the software available with the text it should
0.0. (If you use the lﬂ_!ege:;J train the patterns to within 0.1 of their targets and the network
take exactly 151 nerzmonS] for all 64 patterns. This will happen most of the time for other
g llesacmalies pomee Y 11.) Test the resulting network on nonpalindromes and

aramel initial weights as wel : o
. ho\;eiisc?:sgiﬁes them. L:l'ry to figure out how the network does classify patterns.
see :

3.14. Neural networks do not

* yse a 6-2-1 network

:gdzu; * yse the differential step size derivative term and
* periodic updates

e 0.5 * eta

a 0.0 * alpha

n 15 * the 15 patterns

000000 1

010010 i

001001 0

i O T

T0:0-0 1 1 0

010101 0

A s R il

001000 0

001100 1

100001 1

L0001 0

15300 1 1 i

0000 1% 3 0

a0 0 7 0

081 T 0 g 1

R ’rrestore the file of wei

T ghts

152 152 i i i
Tun 152 jterations (stopping after 151 updates)

Here are the Weights to start the program with:
Or file - pal

cises
L e e SR .

0.1494140625
3457031250
0.0507812500
.4843750000
0.1660156250
0.3867187500
0.3945312500
.0048828125
25

0.3603515€
0.1132812500
0.2812500000
0.4521484375
6562500
783203125
0.2304687500
.1962890625
0683593750

5. Train a back-propagation network to learn sin(r).

3

3.16. Store the data for the 12 sports fans in Section 3.6 in a Hopfield network matrix
and save these weights. You can either use the simple Hopfield matrix algorithm given
in the text or use the back-propagation software that is available with the text (or any such
software). With the back-propagation software, reasonable learning parameters are 1 = 0.25
and a = 0.5. A threshold value of 3 will work well whichever method you use. Input the
weights to a Boltzman machine simulator and give the simulator the pattern that represents
a person from Chicago who likes the Cubs and have the program do several dozen or so
relaxations. The purpose of this is to have the program complete the Cubs fan pattern by
supplying the rest of the data for each Cubs fan. Because the updates are done at random,
sometimes the process will “remember” one Cubs fan and sometimes it will remember
another. Note how often each person comes up. Explain why some names come up more
often than others. It people also remember things using a Boltzman machine algorithm
then does your explanation have any implications for human memory?

3.17. Suppose we have a simple two-dimensional pattern classification problem with two
classes divided up like so:

Il the radius of the circle is | and the length of the side of the square is approximately 2.5,
then the areas for both classes 1 and 2 are approximately equal. With this configuration
itis easy 10 generate points at random and assign them to one class or another, TrainVZ-
-2 backprop networks with 50, 100, and 1,000 training points and test the network with
1000 points. Vary n as well as the algorithm and algorithm parameters to get very close
Convergence for the training set. While training, test the network at regular intervals o see
how well the network is doing. Repeat the training a number of times for each parameter

Pattern Recognmon .

102
alue for how long the trainin
and computer time.)

¢ takes. Gra e res

i ng takes. Graph the results, (Thig
jerage v !

o get a good averag

b r
Sy Jot of human

. Son
exercise can take . = &
: ith the same training and testing .pmnlx hu! us: t:hs Tlcuresl Neigh.
3.18. Do Exercise 3 Iv; “le“,rn\ Compare your results with those from mk—pmpagmion
1 Sity erms. J !

bor algorithm to)

vise 3.17.)
(This will g0 much faster than Exercise 227

ith the same training and testing points but use the Decisiop N
wit S re your results with those from huck—propugmion
h. -(This. too, will go much faster than EXEM‘B

3.19. Do Exercise 3.17
face Mapping (DSM) algo '
and the simple nearest neighbor ap

317)

Igorithm. Compai
1 proacl

al world data of any sort. st{ch as \\eulhfr data, stock Markey

data, or scientific data, apply back-prop. llul‘l.ﬂnd/ul' DSM und/or‘lhc nNearesy
da.ta. sports a_“il to see how well the algorithm can predict answers. A lot of real world
ﬂelg'}bﬂf alig(gln \Tu the Internet including the Gorman and Sejnowski sonar daty,!! For
d[al:a 18 Za\];;rl; data you can look. for instance, in the directory. pub/machme»lcuming
gat:t:ar; on the system ics.uci.edu and the comp.ai.neural-nets FAQ.

3.20. If you have some rc

1 h
The sonar, data comes wigp, the www.mcs.com/ drt/svbp.htr
ies 4
i bdckprop software found at http:// mes. s l.

Chapter 4

Rule-Based Methods

4.1 Introduction

In this chapter we will look at some standard symbol processing techniques, in particular
those techniques associated with rule processing. In order to do this we will first look at
some elementary Prolog so that it can be used as a notation both in this chapter and in later
chapters for symbol processing algorithms. Prolog was chosen for this task rather than the
also very popular symbol processing language, Lisp, because Prolog has built-in pattern
matching capabilities that Lisp does not have. Prolog gets much of its power by using rules
so the language itself is an illustration of rule processing. k

In this chapter we will look at examples of a type of Al program known as an expert
system. An expert system is an Al program that is capable of doing the work of a highly
skilled human expert. The programs mentioned in Section 3.7 that rate bonds or analyze
sonar echos would be considered expert systems, while a program that can recognize letters
of the alphabet would not normally be considered an expert system since any human being
can recognize letters of the alphabet. The classification of expert/nonexpert system is made
this way even if the internal operation of the letter recognizer and the expert system is the
same. A number of famous rule-based expert systems will be described. A cautionary
note needs to be kept in mind regarding expert systems. It is that they are rarely as good
as genuine human experts. The most famous criticism of the abilities of expert systems
comes from Dreyfus and Dreyfus [28] where they list instances of expert systems that are
notas good as the best human experts. They maintain that because expert systems are not
as good as the best human experts they should not be called expert systems at all, but only
competent systems. Furthermore, they argue that real human experts do not use rules.

42 Some Elementary Prolog

Logic has been one of the most appealing approaches used to try to produce artificial in-
telligence. One of the reasons for this is that people are often viewed as being logical
Creatures. - Another reason is that logic is the means for doing mathematical proofs and
many computer scientists are former mathematicians. A third reason is that it is very easy
to Program computers to do simple examples of logic. The most commonly used form of
l(’g’F 18 predicate calculus. Predicate calculus statements use a formal functionlike notation
10 give facts (statements) about a problem. Working with these statements, you can prove

103

102

ng the training takes. Graph the resyjg (Thy
2 < (Thig

value for how lor
1 computer time.)

a good averag

ing to get §
S e 4 Jot of human anc

exercise can take

3,17 with the same (raining and testing })01[:5 buft use the nearest neigh.
3.18. Do _Er.]xcrfl‘(.l» \1[\ patterns. Compare your results with those from bdkk_pmpﬂgaﬁ“n
por algorithm (o classILY PX e 317 .
(This will go much faster than Exercise

3.17 with the same training and testing points hul- use the Decision Sue.
M srithm. Compare your results with those from baCk'mei\gaﬁo“
o h 3 1 \

20 (This. too. will go much faster than Exercige

3.19. Do Exercis
fi apping 1) al
face Mapping (DSM E o
and the simple nearest neighbor approdc h.
3.17)

¢ some real world data of any sort. such as weather data, stock markey

3.20. 1 you hav ly back-propagation and/or DSM and/or the neares;

S < data. or scientific data. app
ata, sports data, or scientific data ; lon ancror = A
dd‘tith:)r algorithm to see how well the algorithm can predict answers. A lot of real world
s 5 - Judine the Gorman and Sejnowski son: 11

data is available via the Internet including the Gorman and Sej ki sonar data, ! Foy

other real world data you can look. for instance, in the directory, pub/muchine-leaming_
0 ay

database on the system ics.uci.edu

and the comp.ai.neural-nets FAQ.

chapter 4

Rule-Based Methodg

4.1 Introduction

In this chapter we will look at some standard symbol processi
those techniques associated with rule processing, In olidecessmg (e‘fh"iq\les. in particular
come elementary Prolog so that it can be used as notationr[:(’ d(f lhl§ we will first look at
chapters for symbol processing algorithms. Prolog was ChgsOlhfm ‘hlls chapter and in later
Also very popular symbol processing language, Lisp becau:: l:ﬂl\ls task rather than the
matching capabilities that Lisp does not have. Prolog ‘gets much ?lug has built-in patter
o the language itself is an illustration of rule processing, OFits power by using rules
In this chapter we will look at examples of a type of Al
gystenm. An expert system is an Al program that is capable of doin, the work i
skilled human expert. The programs mentioned in Section 3.7 lhalgrate I‘:”ordsuf Wi
sonar echos would be considered expert systems, while a program that can ;ﬂ o =
of the alphabet would not normally be considered an expert system since an‘x;gumz‘a lsl{m
can recognize letters of the alphabet. The classification of expert/nonexpert zysle"n:ains r:::lg
this way even if the internal operation of the letter recognizer and the expert system is th:
same. A number of famous rule-based expert systems will be described. A cautionary
note needs to be kept in mind regarding expert systems. It is that they are rarely as good
as genuine human experts. The most famous criticism of the abilities of expert systems
comes from Dreyfus and Dreyfus [28] where they list instances of expert systems that are
not as good as the best human experts. They maintain that because expert systems are not
as good as the best human experts they should not be called expert systems at all, but only
competent systems. Furthermore, they argue that real human experts do not use rules.

program known as an expert

4.2 Some Elementary Prolog

Logic has been one of the most appealing approaches used to try to produce artificial in-
telligence. One of the reasons for this is that people are often viewed as being logical
creatures. Another reason is that logic is the means for doing mathematical proofs and
many computer scientists are former mathematicians. A third reason is that it s very €asy
1o program computers to do simple examples of logic. The most commonl_y u§ad form‘ of
logic s predicate calculus. Predicate caleulus statements use a formal functionlike notation
1o give facts (st) about a problem. Working with these statements, you can prove

103

I Rule-Bageq M'”lsg.
- /x

Sratements that you (ry (0 prove correcy =

statements. u ,
T is therefore often called theo, e °ﬁen
" proy.

Jsity of othe)
Jculating of n

ew results e
The greatest theoretical success in this

2 as Re iof arey

ted reasoning is a proof technique known as Resolution. The next chapier consj
a:lom.l ol cie OF Resolution. Prolog is a programming language that uses
the more &) i

bset of the Resolution technigue. 1t basically consists of processing simple ruleg
subset O L i

fon if A and B then C

the truth or fal
called theorems and the cal ,
ing. tis also called automated reasoning
ing. Itis als

Only
of the

and so it is quite easy 10 understand a Prolog program w ithout studying Resolutiop,

421 Stating Facts

ng language very much unlike conventional languages such ag Pase
differences is that it has few of the traditional contro] Structur
For another, the usual method of using Prolog is inleeb
es that are true. Here is a series of faclz

Prolog is a programmi
and C. One of the major
found in conventional languages.
active. Statements in Prolog represent facts or rul
stated in Prolog:

/* 1 */ likes(matt,mets).

/* 2 */ likes(carol,cubs).

I* 3 */ likes (bob, cubs) .
/* 4 */ likes(bob,bears).
/* 5 %/ likes (mary,mets) .
1* 6 * likes (mary,yankees) .

Fa] likes (nancy, lemonade) .

'Ih.e numbers between /* and */ are comments and are not required. These statements are
quite English-like and they simply look like sentences where the verb has been removed
fr.om the middle of the sentence and placed in the front. All statements and rules must end
with a pepod. We define the first statement to mean “Matt likes the Mets.” Usuall mn'
people will translate English to Prolog this way by simply moving the Vf;l:b to the f);‘ontosz

the statement, however, this i mim Ju
A y s not always done, so a Prolog progr: mi
) " Fi
first statement to mean “The Mets like Matt.” B

4.2.2 Syntax

Prolog program i
s con is ei
i e f)nrsl"of tberm& A term is either a constant, variable, or a structure.
tnsute e ulm ers. Numbers are integers or reals. Atoms consist of any
enclosed in single quotes (*) such as these atoms:
'St. Louis Cardinals’
’095°

"+t
Oran atom can consist of
digi asequence that begins wj
gits, and the underscore character (_) su‘:;g;:s l::sl: :liOWercase letter followed by letters.
ms:

st_louis_cardinalg
stl

x99

4.2 Some ﬂamamnry Prolog

. consists of a sequenc
or an atom ¢ quence of the specia
Special characters;

N> <= ey

such ast

>
L.

variables are another type of term and they

. start wi
underscore followed by letters, digits, and unde; With an uppercase character or an

Tscores such as the following:
X

Team

-abe

St_Louis

The variable consisting of just an underscore by itself () is
X x -) is called the anoy i

and it is reserved for a special use. oL el

The final type of term is a structure, such as in the facts we have already seen. In the
term:

likes (matt,mets)

1ikes is called the functor, and matt and mets are its components. When a functor is
used to structure data it is called a functor (an example will come up later), however, when
4 functor is used to express facts or rules it is usually called a predicate.

4.2.3 Asking Questions

The set of facts, or clauses, 1 through 7 above might be contained in a file and be read by a
Prolog command, or the user might type these facts directly into the Prolog system. With
this set of facts in memory, we can go on to ask questions such as the following, where
the ?- at the beginning of the line represents a prompt for a question that is printed by the

system:

?- likes (nancy, lemonade) .

In this request, we have asked the system if Nancy likes lemonade. Prolog 5“:1]“‘1’? ‘:’
answer this question by simply looking through its database of facts for this pamtxc‘h :r“: g
I starts at the top of the database an tion agan

d tries to match this one ques! i
facts in the database one after another until it either finds the fact, or finds the end 0
database. In this case, Prolog responds:

yes

If the question had been:

?- likes (nancy,mets) .

Prolog would respond with:

e T

has available to it, it cannot proye
. 15 that Prolog . .
This “no” means that, €/ve” ;’l‘;{‘:"j from proving that Nancy l(!(()g:: ’:l’:tléﬁ‘e the Mets,
0 i] OV we can as! system:
Nancy likes th- Ailel’;r::;z ‘complicatcd question that we can ¥
Here is a shg!

2= 1ikes(x,cubs) .

i : s any persor
is question means: 1s there ap'_ &
g‘jlf(alluperson]‘ Initially, the variable, X. has

no

1. X, who likes the Cul_)s'.’ If s0, report the e,

a5 no value and is said to be an uninstantiarey

ching process an uninstantiated vurmbl‘e. cafl match anyth;, :

variable. In the pattern 4le“ ‘ .g"em matching problem. Prolog_slan.s at the top of the

; a s:xmg}eilps an match this pattern with un_ythlmg.x The first fact fajlg

The sec(:;)db?zcx does match the Em(em. ;ic \;;1;::1?)5‘ . N0 becomes g
"?uz:tti:;ed variable and has the value. wcarol” and Prolog prints out:

1

X = carol

oy [Royt its for the user to res
e interpreter Jeaves the cursor at the end of this line nd waits for
The i s the cursf e user

. » assumes the user is happy wjlh this one response
If the user types 4 ca{?;gzn‘::xgaig“o‘i]_ If the user types a *:” at this point, Prolog goe
. pr:)}lnelpdatabase Jooking for another possible solution. We“lypc ,'h e ™" and
further on |‘moes searching from where it left off and X loses the value “carol” and a;ﬁn
ll:rez:lg\ecso:: r:Jt;linsmmia\lecl yariable. The third item matches the pattern so Prolog prints

out:

X = bob
' g arria turn would end this search for

Prolog again waits for a response from the user. A carriage rel .
soluginsg. A * will cause Prolog to search further. If we type the latter, it cannot find any
more matches so it reports, “no” and prompts the user for another question. As a special
case, the anonymous variable matches anything but it is never instantiated to any value. So,
to ask if anybody likes the Mets without getting back the name of the person, use:

?- likes(_,mets).
Tt is also possible to ask the question, “What does Mary like?” by saying:

?- likes (mary,X).
and to ask “Who likes what?” by saying:

?- likes(X,Y) .

In this case, 1ikes (X, Y) will end up matching every item in the database.
- Prolog is also capable of answering questions such as: “Is there anyone who likes the
Cubs and likes the Bears?” This s stated in Prolog as: }

2- likes (X, cubs) ,likes (X, bears) .

" between the two clauses is read as ‘and.” Again, in thi
2 is read as ‘and.” Again, in this case, Prolog
e the top trying to match the first clause in this question. For the
lem"ﬂws'ewndclauscalonc.chhing
‘ therefore,

42 Some Etemetnaly riviuy

107
w1 % likes (matt,mets) ,
Y likes(carol, cubs) , 1
.3 */ likes (bob, cubs) .
VY likes (bob, bears) ,
15 likes(mary,mets).
Lk likes (mary, yankees) .
Y 1ikes(nancy,lemonade).

§ ks on satisfying the

prolog now V{nr ying second clause b !

u::"'L Effectively. Prolog goes off on another cal] o¥m’:§r:thetopufmedamm

will now search (hrough lhe_ database and try to fing "1 matching procedure. Prolo,

wo Prolog will return to its first call of its pattern match; wi

;:\uldh “likes(X.cubs).” beginning just after the clause :immmd continue trying to
- s no longer instantiated to the value, “carol Prolog now ﬁnd:n 3“1.- The variable,

Lehes “likes(X cubs)” so now X will be instantiated to “hob.* hlo‘:‘;ﬂ‘]‘mbo‘::mm

! ol

I‘I:J(hu database, again witha “1” like so:
1 */ likes (matt,mets) .
20 ®f likes (carol,cubs).
3 %/ likes (bob, cubs) . 1
x4 */ likes (bob, bears) .
5 */ likes (mary,mets) .
* 6 */ likes (mary, yankees) .
k7 %/ likes (nancy, lemonade) .

Prolog now goes off on another call of its pattern matching procedure and its problem is
{0 try to find out if “likes(bob,bears)" is true. Prolog quickly finds that it is true and since
(here are no more clauses in the question to check on, Prolog reports:

X = bob

and waits for a response from the user. Again, typing a carriage return will end this search
process and typing a ;" will continue it. Typing ina " is effectively like telling Prolog
its answer is a failure and it should continue looking for another answer. We type the *;"
and Prolog continues searching on from the fourth clause in the second call of the matching
routine, 1t fails to find another way to match “likes(bob,bears)” and so it returns to the first
call of its pattern matching routine. Prolog resumes searching for another Cubs fan nnﬁﬁ
after the clause marked with the ‘1. This fails, and Prolog then reports “no” and asks
another question.

We now want to consider briefly what happens if we ask the longer q :

2 likes (X, cubs) , 1ikes (X, bears) 1ikes (X, lemonadel ok
That is, is there anybody who likes the Bears, and likes [
have already done part of this problem, so
the point where the first two clauses have been
clause. At this point we will have placed

second clause in the question
this fourth clause with a

FAosng

g i

1ikes (bob, cubs) - 2

e likes(bob,bears),

iy i mets) -

* 5 */ likes (mary.)
j* & *f likes(mary,yankee;e)l
/%7 */ Iikes(nancy.lemon

' ird clause, “likes(bob.lemonade).” This searcp .-
We can now go on totry ;0 1;(]) i;?‘!;te;z:[rem matching routine. It will, of course, f) ::u
e e i 'hl"' tco return to the second call of the Pafle,m m}“Chlng coutig o
e e sarching l;hodoébase just after the clause we Iabgled 2! ATh.s part of (!le
resumeds«i:{mlig;itm;sa:o the first call of its pattern matching routine, restarting jg s
fails and Prol

1 4. Ultimately. this searching fails after more attempts and Prolog reporgs, ey,
at statement 4. &

4.2.4 Rules)
s . dle rules. Rules are counted as clauses
handle facts, it can also han Rl re counte ..
:/::[:{o%fcx 3‘:..??;ywme the rule that “All Yankee fans like lemonade.” it is:
/* 8 */ likes (X, lemonade) :- likes (X,yankees) .

f

| hen X likes I de” X

H i ikes Kees, Kes onade™ or “X ik,
be read as: “If X likes the \fa_nkees then X likes lem .

} : ;[:llll:n:tlii ‘1:?!)](likes the Yankees.” The conditions on a rule are called the antecedents ang

{ } the conclusion that would then be true is the consequent. Using !hg first seven facts and

I with this rule placed at the end of the database. we now ask the question:

B

H ?- likes (Y, lemonade) .

{ Prolog starts at the top of the database trying to match this pattern. It first finds that Nancy
{ likes lemonade and prints:

Y = nancy

and waits for a response from the user. We type a ;" and Prolog goes on to the rest of the
database. Prolog will find that the left-hand-side of the rule matches the pattern it is looking
for. The two, still uninstantiated variables, X and Y are now said to share. When one of
them acquires a value, the other one acquires the same value, The problem of figuring out

whether or not a person likes lemonade is now the problem of trying to find out if that
person is a Yankees fan. We mark our place in the database:

IE L xy likes (matt,mets) .
PR, likes (carol,cubs) .
Y. 5~ 1ikes(bob,cubs).
1 *] Llikes (bob, bears)
QRS 5+ likea(mary,mets).
I: 6 :/ 1$kes(mary,yankees)‘)
&4 ;*; Likes (nancy, lemonade) ,)
: Likes (X, lemonade) ;- likes (X, yankees) . 1 i
tart the pattern matching routine

“lies(X,yankees). It il ing - L1 (P Of the list. Tt will be looking for th
RS i e, Yankees, i s0 i bt

42 some Elementary Prolog

y = mary

J wait fora response from the user,

an Keeping variables straight when Processing

Prolog ryles i
2 handles Variables inten;h:u‘;l?;“li;‘;a:n o nhcis
8 Ce, when

_ likes(Y,lemonade) .

i,,wn\:xlly it was made into something like this:

likes(_1, lemonade)
he as been replaced with an ing
pere the Y has be) CIPreter generated var
: srehing through its database and it came upon the rule: iabk, 1. W Prolog was

likes (X, lemonade) :- likes(X.yankees)

i created a variable. 2. that stands for X in this rule, The pattern for the rule i n
ow:
|ikes (_2,lemonade) :- likes (_2, yankees) .

Therefore. even if our original question had been phrased as:

¥, lemonade) .
it would still have been translated to:

likes (_1,lemonade)

<0 Prolog would recognize the X in the question as being a different X than the X in the
rule. This means that each variable in a rule is confined to that rule, the same as local
variables are confined to the procedures in which they are defined in languages such as
Pascal. There are, therefore, no global variables in Prolog. This method of creating new
variables for each “call of a rule™ also occurs in rules that call themselves recursively.

4.2.5 Recursion

We now turn (o some recursive programming in Prolog. The standard wm.gle of mumi}:
programming is, of course, the factorial function. Below we show the definition of factori:
in Prolog:

™ L ¥ factorial(0,1).
Ix g *f factorial (N,M) :- X is N - 1,
factorial (X,Y), p
Mis N*Y. T
Line 1 says that “factorial of 0 is 1" and line 2 says that *N %mwﬂﬁ
defined by the elauses on the right hand side of the mwmin is nfix
arithmetic is a bit unusual. The expression “N - | m:mmim e
the convenience of the user, however, internally, Prolog

-(N, 1),

110 Methog,
4+ is called the more general term, f

bt s not instruct Prolog to do an):‘ar'ilhmetic‘ "h
than a pmdicaw.!:”(":ﬂg +thmetic to be don on the structure “N — 1. -".e'm’"- it
gt at forc
the 'is™ operator

of T S straightforward way. If we want P
i ceed in a straightfor ard
fmcfadona.lprogmmpm

factorial, we enter:

C! an
s0 “N — 17is just another structure

7- fact(3.A), .
S fails because it cannot match 3 y;
h this against lin¢ 1.it il
. £ atch 3 wit; N in the second line of the program. Prolog then sets X o It
mlceall? rft:?;’ AY» This recursive call sets up other recursive calls, but eveng,

this current call. Y is set to 2. M becomes 6. and Prolog goes on to report:
is XS 2,

When Prolog tries to mats
ang
ally, in

A=6

From time to time. people have said that the statements in a Prolog Program can go ingg
the database in any order. Most of the time that is true. however. recursive definitions lke
the one for factorial must have their statements 20 into the database in the correct order or
infinite recursion will result.

4.2.6 ListProcessing

We can now look at some list processing in Prolog. One of the really important features
of symbol processing is its reliance on processing lists of symbols. In general purpose
languages like Pascal, lists of items are often implemented using arrays and accessed by
specifying subscripts. In Lisp and Prolog. arrays have not always been implemented and
the dard method of impl ing lists is by using linked lists. In Prolog the notation
for a list containing one symbol, a. is:

[a]
and it i§ shorthand ff)r the structure, (a[|), where . is a functor called dot and [] is the
empty list. The notation for the list containing the three symbols, a, b, and ¢ is:
[a, b, c]
which is a shorthand for the structure (a.(h,.(c[). A diagram of how these lists are
Pmswredl l:h:rtgm is shown in Figure 4.1, It is also possible to have lists within lists in
og, y producing trees. An example of this is:
[fa, b, [c, a])
Here, the first item in the Jig is: [, i
; e (b]. while the rest of the list is: [{c,d]}, This listis

If we find it i
itnecessary 10 work with the firg(symbol in alist, we would call up a predicale

that would try to match the list againgt the pattern;

\ ~ [First | Rest)

ome Elementary Prolog

425
m

73
7N

¢ 1

Figure 4.1: The internal tree structure of the lists fal and o
{he structure (a] . and [abc]is shorthand for the structure viy
|]1s the empty hst.

1. The notatio n [a] is shorthand for
A0ued). where . is a functor and

whatever processing needs to be done with a and we want to move on to the next element
in the list. the standard means of doing so is to recursively pass this list, [b, ¢], on to the
qume predicate. This new call of the predicate again splits the first element off this shorter
Jist. Splitting one element at a time off the list, we eventually encounter the empty list.

As an example of this recursive processing of lists, we will look at a predicate, member,
that determines whether or not a particular constant is a member of a particular list. For
instance. to ask if the constant, ¢, is a member of the list, [ab.c], we will write:

(a.b.c]).

member (¢,

Member will be defined like so:
[First | Rest])
(First | Rest])

1= X = First.
:~ member (X,Rest) .

member (X,
member (X,

[he first line can be translated to English as, “X is a member of the list, W‘M?’x
and First are equal” or “X is a member of the list [First/Rest], if X is the first uymbg!;&;,
list” The second line can be translated as: “X is a member [Rest] g

of the list, [First
member of the list, Rest.” In working the problem, WQM)‘
with the first definition of member. It can match X with ¢ so X is i
woves o 1o try to match the pattern in the second argument of

(First | Rest) !
This is easily done by setting First = a and Rest = [bye]. Prolog
X=Firslundfnjluincecilnonhnmllt"l'ilmm

on10 the second definition for member. Again, X = ¢, First =
the test to perform is a recursive call of member. “mﬂ?
member of the list, [b,e]: i e

member (¢, (b, €]). g oD R

e,

nulo-a‘..u M
112

Figure 4.2: The tree structure of the list, [[a.b.[e,d]].

Prolog starts at the top of the list of definitions for member
because c is not equal to b, In the second statement, we find X = ¢, First =
We do another recursive cal] of member and now we will have X

[1. This match succeeds and 50 ultimately, Prolog Teports: yes,
In case we had asked the question:

?- member(d, [a, b, cJ)

&nlc(;i v;iil]]] l::l':lave as above but it would make another recursive call to member, this time
member (d, []) il
This ill fai 'Iﬁ "
g;llm wnll fail b;cauu whcq Prolog attempts (o pattern match the empty list
m], it finds it cannot split the empty list into a “firgy part” and a “rest part.”
! another .'yve conslii.r;! the problem of Jooki|
| '€ positive numbers ip iy, For instance, if we
the list of pogitiye numbers, pos, and we give Prolog the
Tliddiner, 300 101, x)

and finds that the first one fails
b, and Rest = [¢].
=, First = ¢, and Rest =

= Elementary Prolog
0!

425 M
pos([1.(1).

., pos([AlBI. (alc])
i pos ([A|B],C)

* - A, Pos (p,
° i= Pos(B,c) . Rig).

W e

s that the list of positive numbers inan "l
inevt! ;g;‘;\,:llit the list of integers into afirst elm:?y&l::m list, u. 2

hat I..{cu‘” than 0, then the list of POsitive numbers i the list [I\[Blit:::e ‘_mn;n,u

AT B llowed by C ([A[C). \fhﬂeClslhelistofm list with

(he tmlhnc should fail, the third line applies, and it h‘helinoi ;

e list 1Al

pos(1-1,44,97,-300,10],

3: pos(1-1]44,97,-300,101,. .axipmes Pos(144,97,-300,19),_gy,
se 2: pos((44]97,-300,10], (44]_c2)) = pos(197,-300,10)
rule 2

2.
s rote 2: pos((971-300.101, 197} €31} - poa(i-300,10). 3.
s SEei i LR RLERIS —€4) :- pos((10), 4.
6 rule 2: pos((10 | 1, gy e i 4
7 rule 1: pos([], nmn

Figure 4.3: A trace of how Prolog interprets the call: Pos((-1,44,97,:300,10],X).

The English description of pos is quite neat, but to get a better idea of what uhm)qdnc
in the process we will look at a handmade trace of the yoom,mAn va:'ﬂmm
by a Prolog interpreter will probably not Iook like this. Also, mrm b
description is not quite the way a Pmlpg interpreter would go !in“l o
them. The sequence of steps is shown in Figure 4.3, In Mmz il AT
problem. Prolog tries 1o find a rule to apply. It finds that e It T 10T
the figure, Prolog examines rule 3 and finds a way to break “8' in rule 3. B gemrei il
fernnis meant 1o represent the uninstantiated variable %2. rule 3 can be satisfied if

cll will have a C variable with a different number. Sull oftheproblem: -
Isight-hand-side can be satisfied. The right-hand-side consists Hows

pos((44,97,~300,10),_C1).

comes upon rule.
This is passed to Prolog and in line 3 of the figure, Prolog e

another uninstantiated variable, *.C2" '*""'""'”W ; |
this case the second argument will be: I&m"z“

the second argument will become a list with 44 at

onthe tail of the list, That something will be

e know that C2 will eventually

it this time, "“”%
o L b

Satisfied if (he pi
Problem: S

Rub.g...

114

- 10],.C2)-
5 ((97.-300.10%:~ (| -
po o in this manner with Prolog attempuing 1o verify cither rule 3 .
continue s m i
til Pfgllfg gets the problem 11 line 6:
un
pos([1.-C3)-
rule 1.
js problem matches 2
n‘[mch?r:’g completed. Prolog can

tion. It works like this:

w knows that [C5is []. With all the

10"
prolog ¢ of the variable, X, in the origj
Binal queg.

Jook up the valu

X matched Wi
_c1 matched
€2 matched with L
_c3 matched with
_c4 matched with
c5 matched with 1.
giving X = [44, 97, 101
ut the value for X, Prolog waits for input from the user. If the user typesa
ch from this current point. If the user types a Camagem
cursive calls and prompts the user for a new question,

Both member and pos follow the typical pattern found in recursive list processing gl.
gorithms: you break off the first item, deal with it. and then deal recursively with the regt
of the list. At each level where you broke off an item. you combine your result with the
results from the recursive call that processed the rest of the list. Recursion is really quite
nice in that if you can simply list all the possible cases that can come up, together with
their answers, the problem is solved. Recursion is not normally very efficient but most Al
researchers have never really been concerned with efficiency.

After printing 0
« Prolog continues the sear
Prolog returns from all the re

4.2.7 Other Predicates

Some other Prolog predicates will prove useful. Two of these are assert and retract. Assert
;dd.s facts to the database while retract removes them. The following line adds the fact that
red likes the Cubs to the database at the end of the likes predicates:

assert(likes(fred, cubs)) .
The statement:
retract (likes (X, cubs)) .
will cause i
mgwﬁmmnammdwm for a fact that maiches
W e m:iunfhmmefquillhemm&w
Tvoother “nﬁm mu.uumm-dmw“’::

mhﬂd%m.hhw
o o gL O
i v 1 b

4.3 Rules and Basic Rule Interpr,
Methods

This pmduces:
hello
world
Another important Prolog predicate
alue and ch : 10 mention ;
a true value qnd changes it to false S on i the ot o
example. it itis given that Matt likes the n‘&i't?.i‘,;”se Wuwm gimlﬂmu
 then giving Prolog the queg . For
Question:

not (likes (matt, mets))

will produce: no.
then:

If nothing at all is stat
ed about Bob |ik;;
ng or disliking the Cardinal
s,
not (likes (bob, cardinals)) .

will produce: yes. This is a somewhat pecul
calculus-based theorem proving fmml m::a;r:ls:ll for P°0|_)lc well versed in S
without having the appropriate information about Bgo;v ::ddmm In predicate calculus,
possible to prove the proposition that Bob does not like the C::;ihkes and dislikes, it is im-
not predicate is not really the same as the logical not found in pﬁ@?:f“:e'mm‘%
calculus.

4.3 Rules and Basic Rule Interpretation Methods

RULE

SET OF DATA
RULES BASE

Figure 4.4: Ruks-ndfmumwhﬁmdmnmhinmwmmww o

When using rules, in general, the rule base and the facts are fed into
sometimes also called an inference engine, because it works through the

attempts to reach new conclusions. A simple diagram of this KRED A
Figure 4.4, In general, the rules can be placed in any

Rule-Based ”Ru...-ndaulclubm
116 3 nss :- bird, f1
jon. Programming the system focuses_ on creating LTy a1batross T ieswel]
it for a later on. les are known as knowledge engme;rs. The set of ead of Joing it this way, lhe s
;":“m The people that create the ru and the systems themselves are called k 3 ll“]lkl‘h"" write our own simple interpreters
is referred to as the knowledge base sometimes referred (0 as production W1 o, here is how the rule for i
;_,k:jm;ym" Rule-based systems are d]TS:a wertain extent. a rule-based system can be ot . .
and pattern directed m,e;m“-zf';ﬁaving new sets of rules pll'ufegclt'i;: au‘::y w _arule((bird, flieswell] -albatross) .
made to handle new ?mbc:“m:cv“‘ a given rule interpreter Wi ! sui(ed:slthe and wijy - jirst item in @ rule will be the list of &
Wlttpwsfm"ng or even need to be replaced by one mo! Particuly 1h:ucnl As it happens in all the rules we wil) use, there wi|
some : sequettt 75 will
l::‘”“ le interpreter to deal with a system of rules, I hut. 11 & C"'TNL lhcrfl giwbt:!:\ote ' . m‘?m
a number of ways for a rule 1 s. forward chaining and backwarg [ules We will use an lem mmm‘ﬂ. ’
There are simplest methods.) ‘rule. are rules desi o Py .
this section we will program "hf o k at more complex methods. In this section the predicare. ‘T S0 e 'valhe'ed‘ Wup .
ining, and then in later sections look at m¢ “fying system. Jaheled Sidrule’ are us give the identity of the o0
ety 11 be il with a small animal idenufying s) Mml
methods will be illustrated ;

431 A Small Rule-Based System

giraffe cheetah zebra

§

albatross penguin ostrich /+ Rules for intermediate conclusions s/
rule([hashair] ,mammal) .

Eoly rule([givesmilk]) ,mammal) .
rule([flies,layseggs] ,bird).
rule([hasfeathers],bird) .,
rule([eatsmeat,mammal],carnivore) ,

rule(l-a—al.po'u\udtnth.huclm.m
rule([mammal,hashoofs],ungulate).
rule((mammal,chewscud] ,ungulate) .

/+ Rules to identify the animal s/

drule([carnivore, tawnycolor darkspots] ,chestah) .

idrule([carnivore, tavnycolor,blackstripes] ,ti X
idrule ((ungulate,longlegs, longneck, taunycolor,dar
tdrule([ungulate,blackandwhite,blackstripes] ,ze

idrule([bird, longlegs,longneck, rich &
tdrule([bird,swims, : 1A mt:‘- “ "

idrule((bird, f1iesvell] ,albatross)

—o~O0o~00 -0 ~

OO~ =~ 00000~~~

O~o0O0C0cO0OOCOCOCO0O~O~O~OOOO
©Co~o0c0cO0OOCOCOOCO~ROOCOOC~OOCOO
oo~~~ ~OOCOO~ROCOOC~,GCO OO

0O == O —

i

/* some sample data o/ o

- COOOC ™= =00 C O O ™ m = -
SCCcCoO~DDOoO=~DO0QO0~0C~QC0O =0~

flies,
layseggs.
fliesvel],

Figure 4.6: A o1,
inimal will jogk ‘-

118 .
Chaining . P —— o

4.3.2 Forward e Cal,edvft)m'llldffldl"lng‘wld it %N~

The first major way of Reape s network in that processing begins with the nput g

ard neural ' as bottom-up reasoning, dﬂ.*ﬁ
same way as 8 feed-TORl 0 1o known a8 Ban i h the
and lower-level “’::.de—l:lfm:tmink’ It works by scarching 8 rule base iny

reasoning and ant hose conditions are rue. In £ener dl\}::‘,f,:a:w’ find
systematic way for rules . but for now we will simply scare L g ang
mmnﬂ:mmmg@liom are true. In the ';i:jl sortion we il 9% mh
apply the first rule W than one rule that could be JF':P‘""“ using the folldi
problem of hav e 0 the principle of forward Chining N8 data oy
First, we will illus
the unknown animal:
flies.
layseggs -
flieswell.

rule has all its conditions true, i
en ibe mll:l;:hjcill :?)‘rulc.' and not any of the rules At
hz ::al if an animal ﬂl;'.\ and lu_; s cgi\::;g; it m:: abing
atab: act that the ammal 1s a b ; usin;

T ﬁ:esx: ::: ;(‘Z];h:i‘:r;b:;er::i\l\tlh:' conditons lhyl produced lhisgmtm|
a[?sem:;lmdons were not removed. the interpreter would h‘nd‘lh(;c;at mlh again ang

infinite loop would occur. After remoy ing the conditions that ;ynu. .A(rule o fire, we
besi in and look for another rule to fire. All these operations are easily stated "‘P!ulu'
:fl;:g: below where the predicate f. is for forw ard chaining:

We begin searching throu
point we will be using only t
“idrule.” We come across the rull

£ :- rule(Conditions,Conclu
fcheck (Conditions),
assert (Conclusion),
remove (Conditions),
£,

or the antecedents */

For example, with the data given above for an albatross, we gall the predicate, f. First, { j
tries to match the ‘rule’ predicate and this rule about mammals is found:

rule([hashair],mammal) .

The fcheck predicate looks to see if all the conditions in the list are true, but they are

Prolog backs up to the rule predicate and finds another rule about mammals. This fails
Prolog finds a rule about birds:

rule([flies, layseggs] ,bird) .

mammals fails, the second rule

“‘hflx.wymlefaihbecamm“u no

4.3 Rules ana oasic Huie

£ :- idmlelCondition-,Ani
fcheck (Conditions) e
remove (Conditions),
writeln(Animal) , . I
i g
-avk-,-ﬂ-,‘,.-ik\. Rt &
it :
i e

Hlere. (he program 100ks for the characterig;

s of o
et it prints out lh}- identity of the ani a ¥ :
\\“|ITI|L|\U its conditions met, and the ‘mﬂ“w‘?nh“‘ N 2
(dentificd. we have the Prolog interpreter fy)y Nw %

through, i

{ . writeln(’unknown animal‘)

e st b

. Pkl i 4

Ihe definitions of feheck, remove, and wﬁm"‘li\‘um AN b,

+ rcheck checks the firge condi 3
antecedents and then rccuruv:i“‘ in the 1igt of : s
of them if the first one ig tnz a‘:‘:h the rest 'k

e A Y

ot e e 0

:= First, fcheck (Rest) , ""‘\r'-.nila‘n.!gw
71 o

heck ([1) .
fcheck ([First | Rest))

* Remove removes the first fact
to remove the rest of them., «

remove ([]).

‘ Writeln, a handy statement to write m“ﬁ |

writeln(X) :- write(X), nl,

A ol e i

o e gk whali
4.3.3 Backward Chaining

The second fundamental rule interpretation method is to use the Pro

chaining. 1Uis also known as top-down reasoning, goal-based reas

reasoning, and it is the way Pmblwww
linds a rule that identifies a particular animal:

b - idrule(Conditions,Animal),

bcheck (Conditions),

remove (Conditions),
writeln(Animal) . ?

This definition works by select 4
and then the beheck predicate checks if
are true, they are M{;ﬂd
10 back up and find it

Hu..a“
120
cannot all the identification rules have failed, we -
identified because ,
defi iti:ne ffrc::laced after the above 0n¢ need
n

10
unknown animat ’

iteln(’u)
p :- write . more complex than fcheck. BChﬁd ﬁrzx !Ooks- 'R
The beheck procedlt‘:i;’amad) wue. If it is. the rest of the conditions in e lis

First condition in lhel
sively.
checked recursivel 3
to find a way to prove the con
condition is true. The definitio!
bcheck ([]1) -
beheck ([First | F.est;)
beheck ([First | Rest))

ition 1 i abase, Prolo, an

-+ condition is not in the datal 0log moves o

f the F‘;:i;:?:ll;ue by selecting a rule that will show thy “‘:l’iz
n of beheck is as follows:

;- First, ¢
o ions,First),
b ditions),
remove (Conditions),
irst)

bcheck (Rest)

e data is once again that the animal in question flies, lays

As an example, suppose th he predicate. b and b will end up selecting the rule for

eggs, and flies well. We call d
cheetah as its first candidate:

o

idrule([carnivore, tawnycolor, darkspots], cheetah) .
When b calls bcheck, it passes on the list of requirements for an animal 1'0 be a M
The first rule of beheck will fail. The second rule will break off the carnivore condition,
and ask if carnivore is true. It will not be true. so Prolog will move on to ll_lc third beheck
rule. This rule looks for a way to prove carnivore true. The rule predicate in beheck findg
this rule about carnivores:

T

rule([eatsmeat,mammal], carnivore)

Another call is made to bcheck with this new list of requirements. The first two rules for
beheck will fail. In the third rule, Prolog will try to find a way to prove the First condition,
eatsmeat. This fails and Prolog backtracks, .. Eventually, every possible way to prove that
the animal is a cheetah fails. After this, more idrules fail. Eventually, albatross is selected
as the goal to pursue and this proof finally succeeds,

Forward and backward chaining constitute the two major methods of searching through

arule base. Clearly, backward chaining can be very time ¢ ing i 4
" Yy time consuming if there are many
possible final conclusions that can -

§.4 Conflict Resolution

; yins :xm SYStem we haye bee Using so far has avoided a problem

; SXPEILSYSIems, that of ¢, resolution, In the forward chaining
identifyj tmwenmmed.mdmmnblyw»“
Were true we coyjq simply apply the rule.

24 Conflict Resolution

wwever, in warc!\ing through a ryje
F,‘:ncccdcms satisfied. These rules hm“:::mu‘,’h

b3
‘iﬂhh ¢ their
fire. For example. we may have the foljous ”‘;"*’hﬂmn ¢ triggered, Whichever

wle is finally applied is said 10 fire by jt applied are "lhum
rules: Which of them
IFAand B and C Wik
IF Aand B THEN Y)
IF A THEN 7 Q)
Q)

and all the mndul.un\‘ A.B,and C are true. In thig
of rule (3)'s conditions and rule (1)'g Mm::k‘m‘(z)‘smﬁm“.

()'s L-.vml‘ni«;nx The ‘;')‘r(:g::mm St tel] he I“W:wo[‘:m“&(z),‘m
fire. The final answer that the expert system choose which
\:rh,‘»h of these rules actually fires, M"‘Ywellbedimu' |mhﬂ :

i

i 123435

i 6789

o 11213 14 45

i, 1617 18 19 29

d A 22232495

Figure 4.7: rthaMFpanmu‘mesmmhmmh ing of the units

Notice how this problem is the same
we developed a simple matrix multiplicati

a8 the problem discussed in Section 2.1 where
technique to use to discriminate between the
letters B F.and H. Instead of using the larger representations of the letters as in Section

Toadennty Eand F we could have the followingmlen.wbmﬂummba]mmmm\
wal
1+ TRI&TRALSLOK &R IB&I4&IS&I6&2]
&N&V&MLKS
THEN the letter is E

I T&2&IRA&SRO&ITEREDBEMQISRI6E2
THEN the letter is F S

Again, using this rule-based plan, if the unknown letter we want to i
o problem, but if the unknown letter is an E, both these rules are tri

ofvotes for each letter. If we follow that example m“m cedents
an k- Choosing the rule to fire that has the most specific set of
specificity ordering. first
Another solution to rule conflicts is to
the one o fire. OF course, this is easily done
be triggered, but this leaves the programmer
Kowledge base in just the right order.

I
122
i k of how often and
: icts involve keeping track ©7 hen
Other solutions 10 mtl:dco;:;‘; ‘“e ‘s broken by using either the most mmm
the triggered rules has fi sed rule, the least commonly used rule or the least -
rule or the most recently v e amonly used rule, SUPPOSE YOU £0 10 yous

le of using the s i ite ¢ n at the time, it j
e ﬁlpml:: f fulike symptoms. 1f the flu is quite €00 > IS likely gy

j inary flu because (1) it is what
= = have just the ord:q.u) flul)t h
the doctor will declded)g; s,a(isjlically speaking, it is the most likely disease thay fyy
has at the moment an ther; are occasions where this will not be correct. You could b
.symP‘oms' oé‘f:!“:‘s:mp up the Amazon river and del ng the trip you could have
J":m uop:)::l disease with symptoms just like those of lhf‘ r:‘u4 , " ACQuirey
\ i solution i ent it from happening aly
Ct g Jution is to preven
Another method of conflict reso B ot atog "

i iti itions to the rules.
addi me additional conditions (0 tance. e . !
pair :% rs:les where all the antecedents are true and where one set of antecedents jg notg

superset of the other:

IF A and B and C THEN w) ‘
IF D and E and F THEN Xand Y and Z

It may be that we need to do all these things. W. X. Y. and Z. but it is possible that these
things can be done in a specific order. A concrete example of this nughl be the problem of
decorating a Christmas tree. One expert has this set of rules for decorating Christmas trees:
IF there is a string of lights available
THEN put on the string of lights

IF there is a large ornament available

THEN put the large ornament at the bottom of the tree

¥ there is a medium ornament available

THEN put the medium ornament in the middle of the tree
IF there is a small ornament available

THEN put the small ornament at the top of the tree

IF there is some tinsel available
THEN put the tinsel on

Atthe beginning of the process there are lots of strin i i
; gs of lights, lots of every size om
nd lots of tinsel available so every rule is . .

izing the process. We can break th

nflict Hesoution

2.4 Cor —
IF lights phase = | - R
THEN lights phase « ¢ ol -

lnrgc.umamen% Ay
¥ large_ornaments phase
there is a luge Om.mn; ! and
THEN put the large Ornament thehhbl
¥ |ﬂ!!c-0rnamenu_p|,.. i i of
THEN Iurge.um‘meml_phue ~0
rm:dium_nmllnem;_ph..e ‘_.,‘
I+ medium._ =]
there is a medium mum bl
THEN put the nwdiummmghmmi"

Ik medium.. .l
THEN medium
v ~0
\mallrlﬂ'mﬂwnll_phag =1 " E wisal b ey
It small ¢ S
there i"‘"“"mmu ¢ ‘\"f 50 wil

1F snuul.ommu,ph-. =)

THEN small_omaments_phase ¢ 0 and rab i iy
tinsel_phase ¢ | e g Bl

IF tinsel_phase = | and o ; utqﬂ_& ;
there is some tinsel available .

THEN put the tinsel on the tree

The process has to start with lights_phase = 1. Using this plan, there will be o (

0 choose from at a time, the one that adds something to the tree and the one that han

the state of the problem. A tie can be broken by taking the rule wi onger list of

antecedents. y o T,
It1s also important to note that, whereas we can break the one set of

a Christmas tree into five different phases, we can also declare each phase to

little expert system by itself. This has the nice ady ;

ineach part of the process. XCON is a famous expert syste

systems and it breaks the process into different phases
Still another alternative for with rule conflic

conditions for each rule so that the ce

One way to do this using the first

- ey

o not know enough 1o say for sure yw:

; it that you d ; !

The final alternative 1S mdadmmil:l l::e fuop" that it works out. If this choice fails, b:m!

to use, so choose on¢ a:n:;e :;e st choice and try another rule. w
to the point where you

4.5 More sophisticated Rule Interpretation

i e forward and backward Chaining i
i Jith the simple forwar : ¥
Problems >:omcnmes ;csceurm»:[:e dealt with using more cnmp]c‘ techniques, s ::
have he: Ebl:‘:ei r;al rule interpreters need and we will mention some of s, =
also other ¢
section.

45.1 Dealing with Incomplete Data by Asking Questions

One problem is that an expert system may need to operate t‘"h) un) Inmmplﬂe_sc(of data,
This could be because some data is unobmir?able or because the person §unplymg the data
has just been careless by not giving all the facts that are available. For Instance, a person
may walk up to the animal identifying expert system and ask 1t 1o identify some ammal Wwith
a tawny color, long legs, a long neck, and dark spots ‘Ob‘ 1ously 'h_“ animal 1S 4 giraffe,
but without the program having the additional information that the animal has hair and hag
hoofs, the system will not be able to identify the animal

One solution to this problem is to make the rule interpreter a little more sophisticated
by having it ask the user about facts that the user has not given. This can be done while
the system is searching through the list of rules. Let us suppose we had the interpreter
using forward chaining and the data that it has on the animal is that it has a tawny color,
long legs, a long neck, and dark spots. When the interpreter picks a rule to try to apply, it
first looks in the database to see if the antecedents of the rule are true. If they are, there
is no problem and the rule fires, but if one or more antecedents are not there, we let the
program ask the user if the particular missing facts in the antecedent about the animal are
true. With the data for this problem arranged in the order given for rules in Section 4.3,
the first rule we happen upon is to try to determine if the animal is 4 mammal by checking
if the animal has hair. The interpreter would then ask (he user if the animal has hair. In
this case it happens to be a sensible question since this rule will contribute directly to the

relevant questions for (yat hypothesis rather tha

4.5 More Sophisticated Rule h‘M

4.5.2 Other Activation F“"Cﬂon‘ 125

When a human expert is given i"cﬂmplm
questions the way a simple forwarg Or backwarg gy

» another activation function to p; Ning g, Will not ggi alot of
toused " Pick goog . Ystem ey
et you rate the posslblc.uns-wers. In the animg) id;:‘fio&.,. bmet_ System i
jmmediately comes to mind is to keep a ligg of hﬁc&m prot E‘M“mtmmm
search through the list looking for the highest ammlhndiu \ ¢ ﬁ)hl::\‘::l

andidates. and do backward chaining, asking queq £ O Maiches, e d
|Lh;n the user has not given. So, given thy u:m““h:‘nmm ml‘hemmhkdy

cck. and dark spots, this should activate the o A tawny color, |
" I your data is incomplete and you cumo\g:sr:“e Candidate ‘h"':som' along

want a program that will give you some indicaﬁo:\b::;:: ;‘:‘;:‘“8 fmmmhy aill
y g

\oain for that you need some real-valued activation e, ution s
oL ot od aln are - unction, concl onis, and
functions that can help are described bejow, On. Some other (e i

Cl=021

(8=1.0 C9=02 Cl0=09 Cll=10 C12=05 CB=10

Figure 4.8: An example illustrating MYCIN's method of propagating certainty factors through its
network. The nodes marked with & are AND nodes while the rest are OR nodes.

One of the most commonly used activation functions comes from an early experimental
expertsystem called MYCIN [24], a program designed for analyzing bacterial infections.
MYCIN uses rules that are used by an inference engine to construct and evaluate a network.
I MYCIN the network is an AND/OR tree like that shown in Figure 48. Each nnde
receives values from its children in the same way that nodes in neural networks do
taking the weight on the link between nodes and multiplying it by the value 0
node. In MYCIN the weights are called Wﬂﬂmm‘
from 0 to 1.0. The activation value of a node il;;““‘ |
from 0 10 | and corres to a rating factor like a probability: 74
value of the node is cdpc‘:n&.ad by taking the smallest incoming value
node. At the OR nodes the value of the node is calcu

[

S SRS

el
ERE

lzs,_//—J"\“\ 2852 Methog,

d b. adding them together and subtracting their product:
aand b,

certaintyfactor = a+ b—axb.

ali ore than two incoming values. Values for n

This formula can be ﬁ:\er::t:ilei;})n; r.lerc| set to zero. This is a very ad hoc me‘h?:;‘::
than some arbitrary llL "unb ’O(her. more sophisticated methods have been Proposed b
wu::s;:::hl:‘;:{i:uﬁl[: : ncline;! people who want to make the certainty factors ag close g
m cise ma atical definition of probability.

possible to I:efgret:::nzlt;[«})‘stl: [rl&:l‘i‘:lgt;‘ult‘i and c«fynrlu.\inn\ was developed for the PROS.
PEglgthfxertezslem (30]. This s;stem W:}lS do,\igp:“d o c\';‘llu;uc‘lhe prospects for i
eral deposits. It gives all its possible conclusions an lmngl ram.lg I?' ‘I In P,ROS‘.’ECTOR,
the rating is called a likelihood ratio. As each ‘conrluxvmn gm‘n\ f\l&.‘.cl\tf?r (}Els .flllo N
multiplied by a factor greater than one. If key evidence for the Lf\nk]u,\l(\" IS missing, the
likelihood factor gets multiplied by a value less than 1. One rule from PROSPECTOR is:

IF
THEN

there is hornblende pervasively altered 1o biotite
there is strong evidence (320.0.001) for potassic
zone alteration

In this rule the 320 is the factor to multiply the likelihood ratio by if the antecedent is true
and 0.001 is the factor to multiply the likelihood ratio by if the antecedent is not true. When
the likelihood ratio gets large enough, the conclusion is considered true. The likelihood
ratio is also used by the program to select promising rules to investigate. PROSPECTOR
selects likely scenarios to investigate using these ratings and then goes on to investigate
them via backward chaining, however, PROSPECTOR is also willing to investigate any
theory that the user has.

4.5.3 Uncertain Input

In PROSPECTOR and MYCIN, the answers 1o questions do not have to be a plain yes
(1.0) or no (0.0). Instead, users can enter values that represent their degree of confidence
in the answer. In PROSPECTOR, the confidence intervals run in integral values from =5
for definitely not, to 0 for unknown, and 1o +5 for absolutely certain, In PROSPECTOR,
the rules can also have confidence intervals set so tha certain rules should not eveullt
considered by the program unless the response from the user js within a certain range, say,

perhaps, from +2 to +5.

To cope with the fuzziness of valu
posed. One of them is based on the the
introduction see [268].)

s, several mathematicq)
eory of fuzzy sets Propose;

methods have been pro-
d by Zadeh. (For a

4.5.4 Extra Facilities for Rule Interpreters

The expert system capabilities described so far have really by
the pattern recognition and control aspects of thy m. T nly those associatiy

8 € problem. [n ol 2
you typically need many of the capabilities found in S,?i::l)'m"k’e“‘"i‘
. puter languz

3 . general
such as having variables that you can pinsmn% Wil
¢ ght ne

do arithmetic on, For

ke vl

8 The F!"E"" Expert Systems

1t system for packing Christmag tree o i
f‘;‘;fnl\!:y-"""" ones can fitin a box. To do m}.ﬁm "mumu.w
a IF the large orament coypg inbox B < ¢ like these HM

there is a large omnmntLthum:h A s,
put the large ornamen 1, iy box B .m‘“be Packed
increment the large ornament eoung iy, box B
¥ box B has 6 large ornaments ang L
there are < 4 small oy, i

THEN

put the small ornament in box B and
increment the small orameny countinbox B by |
¥ box B has 6 large ornaments and ;
box B has 4 small ornaments and

there are more ormaments thay need o be packed
get another empty box B and
set the number of small ornaments in this box B to 0 and
set the number of large ornaments in this box B 1o 0
herefore, in this program there will need to be variables,
of how many large and small ornaments are in the box,
jo mind. To “get another empty box™ may require ¢
conventional if statements, arithmetic calculati

THEN

one for each box, that

For this, a record wmﬁp :;:
reating a dynamic variable, Looping,
d VO operations are also required. As
additions like these are made to the inference engine, the resulting language begins to look

very much like a general purpose programming language €xcept it has some new pattern
recognition oriented control structures in it in addition to the ordinary ones.

|
i
4.6 The Famous Expert Systems
In this section we want to look at the kinds of problems that have been handled:
tional rule-bused expert systems by looking at some of the more well-ki
of these carly expert systems are DENDRAL for analyzing mass sp
foranalyzing bacterial infections. These were early systems that demo
ples involved, but they were never good enough to have a technical o
The systems that made headlines because Ofmmmi ver
used for mineral exploration, and XCON (alias R1), used to configure V
tems. We also look briefly at the ACE system from AT&T that is u
in telephone cables. For the most part, expert systen ¥
languages and commercial shells that have facilities to
languages mentioned below are OPS4 and OPSS. Exp
truditional Al languages such as Lisp and Prolog.

46.1 DENDRAL

The first famous expert system !
signed 1o analyze mass spectr

-

NOU-Praamwoo

ar structure of the compounds. For i

1o deduce the molecul ram can take in information from a mass

is
of DENDRAL s 8 (€0 40 the prog

mmmd conclude that the SUTUCLUTe i5:

CH,—CH & ch, - CHo - CHa — CHa—CHy
3 —CH2— -

The compound is called 3-octanone.
100

80

60 %
intensity
40

1
— \“ny T—T T
017

0 20 40 60 80 100 120

mass to charge ratio

Figure 4.9: A plot of intensity as a function of the mass/charge ratio for the compound 3-0(:“
The pattern of peaks allows chemists (and DENDRAL) 10 guess what substructures are present. i i

The process begins by taking the compound in question and heating it in an oven
that the molecules break into pieces. The pieces are charged ions that are accelerated b
electric field and then deflected by a magnetic field onto a photographic plate, Naturally
heavy ions are deflected less than light ones, and ions with more charge are deflected n
than ions with little charge. The apparatus to do this is much like the system in a
except a CRT only uses electrons. The darkness at a particular spot on the photograpl
plate indicates how many of one particular kind of ion is hitting the plate at that
plot of some results is shown in Figure 4.9, Py

With the information available from the mass spectrogram, it is possible for an ex
10 determine what ions are present. DENDRAL uses rules for this like: il

IF there is a high peak
A8 THEN the substructure () j

@ X, Y,and Zand any size peak at W
s present ‘

4.6 The Famous Exp

. heated. For each of these candidaes,
il result, then these simulateq

anknown C"'T'p"""d‘ The Simmm |
N sectrogram is chosen as the answer, DEN -
:,Isnmll number of COI'_HPO“W and it has. never
L-ullcd CONGEN is widely used,
Jse any techniques that would be regarded .
Ly it should not be regarded as an expert system, i

Drey

o g

The MYCIN expert system was ﬁhﬂ -
and give advice on the best poss bhm i
had about 500 rules. The followi o .
Comments within curly brackets are Phopies. .

dier a pair of asterisks:?

- PATIENT-1 = w s o wia
tient’'s name: (first-last)

: you been able to obtain positive
which Fred Smith has an infection?
L evES E
- - - INFECTION-1 = = & -5 0NE
(5) what is the infectien? b

**PRIMARY - BACTEREMIA
(6] Please give the date and approximate
ot the primary-bacteremia (I}
“*MAY 5, 1975 i
The most recent positive culture ass
[INFECTION-1) will be referred to as:

© © - - - CULTURE-1 = = = = =
(7) From what site was the specimen f

* *BLOOD

(8) Please give the date and
was obtained (mo/da/yr)

"*MAY 9, 1975 Lr

The first significant
will be referred to as:

r
(9) Enter the identil

**UNKNOWN

{typ
(10) is ORGI

“Reprinted from
I Davis,

from the

1 ain of ORGANISM-1
(11) The gram stal
e been POSITIVE cultures from sites

(12) Have there D€
associated wi

iy robically?

13) pid ORGANISM-1 grow ae

(

**YES (8)

(14) Did Ol

o

(15

th infections about which you are Seeking

RGANISM-1 grow anaercbically?
is the suspected portal of entry of ORGANISM-1
) what is

into this sterile site? - 81 | =
**GI (6) !

1lowi
My th y recommendation will be based on the following probable

Kita ism(s) :
infectiois(s) and potential causative organism(s

-BACTEREMIA ‘ X
INFECTION-1 IS PRIMARY-BA((possible identiti) .
1 -AERUG :
<item 1> The identity of ORGANISM-1 m ELLA‘PNERU&;}I{OSA
<item 2> The identity of OF,GANISMf-I may F UMONIAE
<item 3> The identity of ORGANISM-

ay

8 <item 4> The identity of ORGANISM-1 may

z <item 5> The identity of ORGANISM-1 may

& <item 6> The identity of ORGANISM-1 may

Y ‘ .

- (46) On a scale of 0 to 4, where & numbers indicate increasing
5‘ severity how would you rate mith's degree of sickness?

%3
(47) Does Fred Smith have a clinica

to any antimicrobial agent?
**NO

(48) Fred Smith’'s weight in kilograms (or <number> POUNDS) : =
**70

ant allergic reaction

{note that 2 drugs cover for 6 potential organisms}
[Rec 1] My preferred therapy recommendation is as follows:
In order to cover for Items <1 2 35 6>:
Give: GENTAMICIN
Dose: 119 mg (1.7 mg/kg) q8h IV [or IM] for 10 days
Comments ; Modify dose in renal failure
In order to cover for ITEM <4>:
Give: CLINDAMYCIN
Dose: 595 mg (8.5
Comments: If diar

Do you wish to See the next choice therapy?

o {alternative choices are available}
Which, if any, of the apoy,
. e a . i
: il Tugs do yoy wish eliminateq from

**CLINDAMYCIN
i Next best thera,

B DY Tecomms -
to cover for endation;
CHLORAMPHENT.

items <2 3 4 .
cor, 5 6>;

Bidsr. B :

46 The Famous Expert S

pose: 1 am (1? mg/kg) g6h v
comments: Monitor patient:g
order to cover for Item <1>;

" jve: GENTAMYCIN

pose: 119 mg (1.7 mg/kg) a8h 1y
comments: Modify dose in rena)

1r L “‘
for 1) gop 1o

MYCIN was only an expgrimem.) System and it po.
s, Davis [25] has experimented with an and it hag

IVCIN called TEIRESIAS.

163 PROSPECTOR e

The PROSPECTOR system was developed by s :
grants from the thcc of Resource Analysis of the US st
Geience Foundation. PBQSPEcrOR-‘ main clajm iy,
molybdenum ore dgposn in Washington state, There are PO
sory. One version is that the system m“hwwh ‘
At a certain spot near Mt, T‘."“’?" and that 1 0t had eveg g o
deposit there. Another vm::.:;::nm i
area, but the program predi Wl it was and 2

lbtltt.‘,und. Another version is that the deposit was 'ﬁl:
concentration of molybdenum ore found by wﬂm
mining operation at the time. Below are two.
TOR. The first excerpt is from an early version where
given by the user ran from -2 to 42 in integral am ouns, I
(he interval runs from -5 to +5. Here i‘mm L=

,,,,,,,,,,,,,, Program execution is now -
Do you want to volunteer any evidence? !’I ik

A. Space name of evidence: SPACE-25L *
New likelihood of (Widespread Igneous Rocks)
JiH

B. Space name of evidence: NIL

Proceeding to establish the IMW
Deposit) :

1. Do you have anything to say
major fault zone)? 1

2. Do you have anything to

3. Do you have to say about |
of andesites, rhyolites, ﬂ!"

4. Do you have anything to

5. Do you have anything

6. Do you have any

YES

*Reprinted from [30]
Duda, Peter Hart, Nils Ni
mission from the publisher,

i

y about an entity with the Cm“p"siti
on

you anything to s&

6a. Have pen Y

E DA
of (OR RHYOLIT 7
i11 hereafter pe referred to as ENTITY-1

y wi

g stif her ENTITY-1 h
. bout whether -1 has the g,
thing to say & m
6b. Have you any!

2
°£7?LU§<; jou have anything t
chalcopyrite filled cracks 1

7a. Have you anything to S
of (OR GALENA SPHALERITE CHALA

after be referred to as ENTITY-2

o say about (Galena, sphalerite, op
n rhyolite or daClte)? YES

ay about an entity with the coch’“tiun
COPYRITE) ? 2

This entity will here

anything to say about whether ENTITY-1 has the pm”rty
u

7b. Have yo
of CONTAINING-CRACKS? 2

7c. Have you anything to say about whether ENTITY-2 is CONTAINED.ry
c. Ha

ENTITY-1? 1
16 Do you have anything to say about (Olivine or alkaline
ndesite)? 2 N)
5 11 Do you have anything to say about (Calc-alkaline andesite)?
NO
14. Do you have anything to say about (Clay Minerals)? 0 1
15, Do you have anything to say about (Reduction process)? 0
16. Do you have anything to say about (Bleaching of rocks)? YES
16a. Have you anything to say about an entity with the composition
of ROCKS? 2

This entity will hereafter be referred to as ENTITY-4

16b. Have you anything to say about whether ENTITY-4 has the
property of BLEACHED? 1

‘22, Do you have anything to say about (Prospect within a few
miles of known MDS)? NO

In summary, the following have been observed:

The most likely deposit t i i
ype is (M i i
current probability ig 0.01465 fessive suitiae Peporitl. Iag

The most encouragin i

: g observations were:

chn}copynte filled cracks in rhyolit, .
dacite plug) cora

The only discoura,
andesite) .

The most useful adq
and (Breccia)

(Galena, sphalerite, or
cite) and (Rhyolite or

N9 observation was: (0livine or alkaline

itional information would be:

(Mineralization)

46 The Famous Expert Systems

133
In the following example (from 31y, note hoy
py asking WHY? m'“‘“cﬂnzuageological
: education
43-- Do you know the age of the Continenta)
2 a

‘mrgin "
majority "obile belty yy

vast
e v

of porph
el rPhyry copper deposi.
iition years.

Major : ts
Jor age groups incluge, = °° Younger than 29

An older group of 200 to 1

1 .
pritish Columbia;

50 m.y.
(milljon Year) Porphyries §
in

An important younger group of
tant you : 70 to 5
Mideast, British Columbia (Skeena Arch) iy 3,
jonora (Laramide) copper provinee; i o5

: o
The major belt of 60 to 4 mmb
Y. its §

Chile, Peru, Ecuador, and Colembia o % s ..

4.6.4 ACE

The next system to look at is ACE, short for automated . 2

heen the first expert system to be used commercially. wa:xd::lk:’edm: }l;any'rhm

Laboratories and it uses forward chaining and has about 300 rues, Itis written - o?sﬂl

Lisp. C. and Unix shell. Its job is to look at a database that contains reports of s::::scnbﬂ
telephone problems and analyze the causes of the problems, In scanning the reports, ACE
does nightly what used to require a human being a month to do. Being able to wm:k this
fast is an important ability. Previously, it could take a human expert a month to analyze
problems. This meant that the repair staff was involved in doing a large number of short-
term fixes that actually resulted from a single larger problem that was undetected.

46.5 XCON

The last system to look at is XCON used by Digital Equipment Corporation to properly
configure VAX computer systems. XCON stands for eXpert CONfigurer and it is also
sometimes known as R1. 1t is perhaps the most important program that can be credited
with fueling interest in expert systems because it reportedly saves DEC mmicmof,dd.lm
ayear while doing a better job of configuring VAX computer systems than human beings
can do. Besides the cost savings involved, there is also the increased customer satisfaction
that comes from having systems correctly configured on the first try. Our descriptions of 1
XCON come from [200]).° i i
The history of XCON began in 1974 when a DEC engineer suggested {
be witten to check all customer orders for PDP-11 computers. Some

PN s
':'l‘lns information comes from a talk given by Dr. George M
“Reprinted from The Artificial Intelligence Experience: An

mission from the publisher, Digital Press.

o Rul.-s...ll
W —

.sic. but ultimately, }cr C(.m.\l..l]ling With
e “n-hv'uB‘:‘(“(lmecgk‘r Mellon [!r?nxveljslly_ it was decj, 'ﬂq‘.:,enw
Def\‘::ﬂﬁ()nc important mnﬂ'dcrullon invol:jed in the decig; "ywin
e ime]l‘l]genclft;le'?::r‘.cnmpunv:ms used in VAX computers and the speclﬁm» .
the fact that the nur

Iy changing. A program that used lrudili()najpm '%fw
V -onstantly ¢hd o N N L '
B “:'cv:‘m be constantly changed as "Lt‘ '":]‘ -ITPF()YFd C()mpolnehll werz
methodology would ah“do]“g\l these changes could be ma 3 t_ry’SlmP')’ by jugy e
added. With the Al mcz’m that “Most of Digital’s dwuop'}:“;l Ie;m agree gy Oding
new rules. Scown rtyf?(’n :md is ultimately the best approach for ¢ I.S problem » In e
olution 1 heednvi::u:-l 1‘()() rules and by late 1988 this was up to nvru 10,000, Thig |
1985. XCQN hd_ J,k S t;vr an interesting new problem: there are ur.y few People g
number.qr rules n](;'fe'ix(‘ON Any modifications must be checked to insure that the 5
- iy “? mg l im of lh.e w;lcm that are known to work correctly, R?“f"‘aft‘hen
- d‘l) nIOI rku'ln [inekl)jthi; pmhlcr{] and have come up with a knowledge acquisition Systen
currently looking s
see [109] and [7]) ‘
for XCON called RIME (see [109] ' £ XCON has been Professor John Mepg
. earcher and developer o) : il
e it he book. The Artificial Intelligence Experi,
low is a description excerpted from the 5 . -
e ree) and published by Digital Press, that describes g,
written by Scown (a DEC employ ee) and pu v Dig "
of how the system works and the effectiveness of it.

* How XCON Works

system were done In
the Computer Science

XCON accepts as input a list of items on a customer order, configures them into 4
system, notes any additions, deletions, or changes needed in the order to make (he
system complete and functional. and prints out a set of detailed diagrams ShOWing

the spatial relationships among the components as they should be assembled in the
factory.

The users are

* Technical editors who are responsible for seeing th

at only configurable orders are
committed to the manufacturing flow.

* The assemblers and technicians in Di
ble the systems on the plant floor.
* Sales people, who use XCON in .

them prepare accurate quotes for
the customer’s site.

gital's manufacturing organization who assem-

onjunction with XSEL, an cexpert system that helps
customers. This can be done on a dialup basis from

* Scheduling personnel who use

) nformation from X0
options for the most efficient ¢,

N 0 decide how to combine
nfigurations,

* Technicians who assemble systemy y the customer’s site

Configuration tasks like that of XCON can be thof
an acceptable configuration 1,

Dermott used a “mach
the solution path; backy,
is usually sufficient (o d

:::L::g ial'er"'m“‘Ch'"g method that does not deviate from
S rare| . N
i becaus g 1#
etermine yp acceptable pexy step, se XCON'’s knowl

4.6 The Famous Expert Systems
e

Elements of the system include

+ OPS5's production memory (knowleg
configure the systems), the embodime,
« The working memory, which starts wi
by the end of processing has accumyl;
will be used to complete the full conf,

8¢ in congiy; X

Nt of the heul:nl Sty
th the seq of
ated

uratiop,

-y o rule fory
stic ‘““’Wledge ha_;bw

! CUstomer., @
Tiptions of Partial ¢op

thow 1o

Mponents by
figurations thy
+ The inference engine, which s the
apphies rules.
© An additional component database

(descriptiong of
be configured in systems). €ach of the Componens

« User interface software that allows the
review XCON output for those orders,

that may
USET 10 interactiye

Y enter and modify ordy
and enter Problem Teports, o
Traditional software for database access, the collection of g
source utilization and functional acey

racy, and for gyt

atistics on hardware re-
reports entered by users to the Support organization,

Matically routing problem

The major subtasks within XCON are

Checking the order for gross errors, such s missing prerequisites, wrong voltage or
frequency, no central processing unit, ete. The first subtask is also concerned with
unbundling line items to the configurable level, assigni

distributing modules among multiple secondary buses,

Placing the components in the central processin,
acceptable configuration of the secondary bus
hackplanes in boxes, and boxes in cabinets.

€ unit cabinets and then finding an
by placing modules in backplanes,

* Configuring the rest of the components on the secondary bus-
cards. and unused backplanes.
all modules.

panels, continuity
Also, computing vector and address locations for

Laying out the system on the floor and determining how to cable it together.

The production rules in XCON that describe the different spbmskg are grouped to-
vether. The rules are separated into subtasks both for casier maintenance arI\d to
increase cfficiency because the interpreter need only consider the rules in a single
subtask at any given time. _ Putghon i1
An example of an XCON rule translated from OPSS into no gl
R1-Panel-Space F
If: The most c[:lrrenl active context is ml-w for mo;iuk-{ r:“‘; m“;:n:lb:m
line-type and requires cabling And the cabling that w:nd‘?hte is no panel already
there is space available for a panel in the current Cﬁl:;mismw]
assigned to the current cabinet with space for module-x “”‘ "ﬁ”}‘d 'm. u‘
relating module-x to available panel space oy mm’.”w
Then: Mark the panel spweinthe@iﬂﬂﬂ_ <10 the panel space.
module-x And create a partial configuration relating modu _ B

M

h mode pmcessing an order every minute or two, X

i e ON |
XCON runs 1n batcl der to configure and if it finds an order, XCON 0k
ot it dalf:as:alf:!::; (\’:ilh its output, and looks for another order, °°"ﬁkuml
it updalcs e
* Testing

ed to create a test set of orders, either 25 cust
ated internally. The idea was to test the vast i .
B st e & %ﬂ?;;fj‘:i’;g:i"gnw XCON could run all of these, me?:f,::"yw
rules on the m‘:bxhat e rules functioned well. As new orders came lhmugh fro
phcre confid;n developers would then se¢ where XCON had failed ang add o
customervs, d : (est cases, constantly making the tests tougher and tougher,
problems to the n>a ainst each rule change and/or each formal release, N"“*“de
iy :ere::u]efin XCON, they run only those tests they believe are £
;;el:to z;z:g gfh new release of updated software to the production cnvimnmem'l'
complete set of regression tests isrun....
* XCON’s Performance
Success for XCON has always been difficult to define. A(the b‘cgipning. the deve].
opment team had long and heated debates ahopl the .dehnmg criteria. They decideg
that XCON would have to examine all orders, including the most difficult ones, The
degree of XCON's accuracy, as judged by human experts was initially 75 percen,
and rose toward a goal of 95 percent over a period of about a year and a half, To
increase accuracy was quite a difficult task because the development team was cop.
stantly adding new products and finding more and more “hidden” details about how
to properly configure a VAX system. Success also became hard to define because the
experts often disagreed on what was correct and what was not.

At the beginning. Digital us o

Another measure of success was acceptance by the technical editors and the engi-
neers in the factory. The technical editors and engincers were at first unwilling to
accept XCON as a software product. Later, after the development team had run a

large number of orders through XCON, the technical editors and en vineers accepted
the fact that the system worked. ¢

The average runtime req
PDP-11s sometimes t:

¢ The Famous Expert Systems
4.

XCON has also made p"ss“’““““‘hmimin‘,,, 137
Lure in the manufacturing procegs. Before xtm_%m

were available, systems were Sometimes CON's MR e ney mea.
was discovered. and then the system hﬂd%to bel«-hlpm‘ = Configuration plyne

, Point at by
wasted floor space in the assembly Plants a yoyy o A Which g l"ﬁhlen
urations are more dependable, so he o 3 time, Wigh 3‘;:“ This
cfficient. can, 'l:llum‘l‘m

\ ample report generated by XCON s shown i Figures 4.10 g 4
! { A

4‘[)Il’ﬂlEITS ORDERED

LIE QTY NAME DESCRIPTION
.1 B61CB-A) 8600 QK0O1-UZ 1208 240/50yqg
KAB6-AD PROCESSOR
12288 KILOBYTES OF NEMORY
1 TUBL-AB 1600/6250 BPI 25/75 1ps 240y
Lo C1780-AB 780 INTERPROC BUS Apy
3 2 PTOR 24 1 OF THESE o
CONFI
4 2 DR780-FB DMA CHANNEL, VAL-11/780,120y 1 0F mtw:m W
VERE NOT
CONFI
s 1 DBB6-AA 8600 SECOND SBI ADAPTER i
6 1 H9652-FB 8600 UNI EXP CAB 1 BA11A 240
7 1 RUA60-CD BA60-CD, UDASO CTL, w/CaAB
s 3 RA60-CD RAGO-AA, H9642-AR, SOHZ
5 5 RAGO-AA 205 MB DISK, 50/60HZ, N0 CAB
10 1 DD11-DK DD11-D 2-SU FOR BA11-K
1" 1 LA100-BA KSR TERM W/TRACTOR US/120V
12 1 QKOO1-HN VAX/VMS UPD 16MT9
COMPONERTS ADDED
LINE QTY NAME DESCRIPTION COMMENT
13 1 DW780-MB 8600 SECOND UNIBUS ADAPTER NEEDED BY THE UNIBUS
MODULES
14 1 H9652-CB 8600 SBI EXP CAB SWHB 240V3P NEEDED TO PROVIDE SPACE y
FOR ADAPTORS
15 1 HSCSX-BA DISK DATA CHANNEL SUP 4 DISK NEEDED FOR A RA6O-AA% b

ERROR WARNING

TEN(S)
*+++ THIS NON-STD ORDER REQUIRES NGNT APPROVAL. THERE ARE NISSING MENU I' ol
FROM THE FOLLOWING MENU(S): LOAD-DEVICE i

Figure 4.10: Part of the report generated for an order by XCON.

CABINET LAYOUT

' ’ I RS —

170-19218-01 |
IFEC CAB # 0 |

IluBa o I

70-19219-01 |H9652-CB 1 |H9652-FB 1 |
CPU/KA86 ISBI CAB ® 1 |UEC CAB & 1 |
| | |

I I I

I | |

I | |

| | |

| |

i I

IIBAL1-AM 1 ||

I1UBA 1 1

:'lueo-n 1 :: ::nso_u 111 |1RA6O-A4 1 I ll;;;;:;;-;-llll
(I
'lll-----~----ll Hmmmmeee (LI E— i :: |
RAGO-AA || VIRAGO-AR 1 Jipygoy, |, LTI
IIRAGO-Ay

I'I!-Jffrta I Tvmrr a3 g llomir g 5) ::“60_“ 1
8 aa I'I Hmmmeee (I T I ||um“ “

I L T
! o l 'l I 11RA60-4y 1
Sl e g Pollmr g g,

The rest of the Teport generateq by Xcon

47 Learning Rules in SOAR

a7 Learning Rules in SOAR

; has always been a weak pojng of i :
ng . Fule-baseq Programs,
ception 1o this has been a program cqjjeq SOAR SOAR - notable
t\‘Lq[;wuriSlic search system with the inigiq goal to .thn'n ‘:.M! d 'WA
be ;“mihlt‘ to do as many problems a5 POssible, Nnnnn; Purpose

1 of its searching ability, however, i this sect

Learnt

as
fermn " SOAR to learn rules as Some eXperim, ;
<rsions of SO.A o Mﬂu
;\::;Avrrxlznxlcc gives the Power Law of Practice Mﬂuﬁmﬁmﬁm stud “]i‘
Jearning i 8

47.1 A Searching Example

figure 4.12: This figure shows the layout of some rooms ot il
::ﬁn room A to room H. “‘!Uﬁwﬂlhhﬁt‘_@}{g
il :
For a simple example of searching, suppose we have the problem of trying to get fromone
particular room to some other particular room.” mklz%hw‘ &
Suppose the goal is to move from room A komﬂ.'!h‘uwryh‘dm
the tree n Figure 4. 13 shows the possible moves a searching program could make. Atroom
A the only room you could move to is D, At Dmhmmﬂm
have any heuristics to lead you in the right direction you could choose to go to
Eor G Suppose you move to E. From there on there are not any choices and
move along to B, C, F, and finally I where there are no alternatives left. T
10 buck up and try moving from D to G. At G the only move you can ma
and that solves the problem. Sk
The amount of learning you can do in this example is extremely small.

worth learning is: Al -

IF youminmﬂn“u‘
THEN go to room G ol

- "The SOAR homepage at:
information on SOAR incf
"This example iy adapted from an

ules versus Networks

48R
A pcarchers &
qce then. ot scar\? e have foung this same
J ::hﬂ- activities & Awell such as recalling faeqg edi Power |gy, of practice
D and playing solitaire ll_4()]. Newell ang Orhiebe ting with text eg; huldsfmm
quce this power law of practice [141), 1y oo =€ shown iy 5oy, o™ Checking proofy
d essence,

e ol learning is that searching takes g " What happen o i agﬂ&m also pro-

~ searchi i e a ot
1d up. the s arching time decreases bec : °fhme, Program gy
E I ::I[:‘Anrfh Because SOAR programs also gey se vaxonsly saved resylyy 4 the chunkg
I pelieved that searching and chunking were th?wq law of ";nr‘::: the need
o shavior:'? Perhaps Nty ts, N
B H Jigent hehavior. most fundamengy 0'_:“‘1‘::\
C
i 4.8 Rules versus Networks
L - flys well
Figure 4.13: The search for a way to get from room A to room H is straightforward, BETE
flys
Notice that there are various other things you could remember from this experience Jike has feathers ird
when you were in A you can go (0 D or when you were in B you can go to C, hOWeve:, : albatross
unlike people, SOAR attempts to find and keep only the relevant memories, not memories swims
that are unnecessary. In SOAR, the relevant memories are typically called rules, bunhey black & white penguin
might easily be called relevant memories. These rules are also called chunks and the proces black stripes
of forming them is called chunking.” s
SOAR has been able to solve an impressive array of problems from simple puzzles up o long legs el
real world type tasks. One system learned the MYCIN rules [251]" while another learned long neck
some of the hardest parts of the R1 VAX computer configuration task [95]. has. hoofs
. “hews cud ungulat
4.7.2 The Power Law of Practice ’ L L.lk ;
gives mi I giraffe

In'a work published in-l926. Snoddy [219] showed that the time, ¢, it takes for a human
bmns to trace geometric figures in a mirror depends on the amount of time, A', used o
practice the task. The exact relationship was given by the formula:

i =bN=*
;V‘::l‘;: :nr:e aizalr:k cor:st:n!s that have‘lo_be determined experimentally. This formula says
value for N), but :.: tze g;:e' task will initially be quite long with little practice (a small
g ! Practiced more, the time to do the task becomes shortet
8The terms chunk and chunkin i
£ come searc]
are exactly the same as Miller's chnnk;,e rom the tescarch of Miller | 22) however, it is not clear if these cht

®Code is available at: hitp;
: www-cgi
Wmﬁinmycinl&hml.tp " CBLeS U edulafifes cmu eduprojectai i i /pl

has hair
tawny color
dark spots
eyes forward
has claws
pointed teeth

cats meat

Figure d.14: The rules for identifying animals can "”"" ctobos
forward network. The weights and thresholds for eyt
mammal, and camivore nodes are OR nodes while the restare

142

. lue weight

layer umit VMO IR 3 09056
2 3 0.00147 -0.38760
2 : 0.42901 -4.29914
2 ’ 0.66736 -0.28191
2 4 0.02098 -0.96560
2 5 0.00156 -2.02424
2 6 0.61722 -0.62367
2 i 0.01811 7.90404
2 - 0.05367 0.51293
= Z 1.00000 -0.78887
3

ws some of the weights in a l’~)-9»7v backpmg network Mh‘
em. In particular. these are the uclghls leading into the .mm

: i _based network, there is no easy way to determine the meaning of the
unit. Unlike a rule »ﬂ«fdd 1 units”" in the rule-based network also mean mmel.hlng. The unit
Folr math:i.isllh:m:‘:ﬂchn unit values in this netw ork and there is no simple mtcrpmudmh“
column

collection of values.

Figure 4.15: This figure sho
the animal identification probl

As noted in Chapter 1, rules can easily be viewed as small neur'al networks. If we take the
rules in the animal identifying example they can be assembled into the one larger networ
shown in Figure 4.14 that, of course, looks much like a coml'ennonal'back-p.rw
network but with far fewer connections between the nodes. The introduction of hidden unitg
to recognize birds, Is, ungulates, and carnivores can cut d0\-.vn on the ovenl]m
of processing and of course, they also serve to divide animals into groups with similar
characteristics. Another important difference to note is that the units and their connections :
can easily be stated in English. This is in marked contrast to the type of network you would ‘
get from training a back-propagation network on the animal data where you end up w‘l_ .
only a collection of incomprehensible numbers as in Figure 4.15. Clark [18] has said tha
the symbolic rule-based systems have semantic iransparency because the meaning of each
component is easy to read out, whereas the back-propagation type of network does
have semantic transparency. Rule-based systems can therefore quote the rules they us
in reaching their decision. Neural systems cannot do this, but if the database of train
data is available, they can cite cases 10 back up their decision. In some applications
say, a loan approval system, both the rule-based and neural systems can give reasons fo
rejecting an application in another way. The process can be done by varying the in
md_ showing what kind of characteristics o person would have to possess in order to
their loan approved. Then too, it must not be forgotten ha he rules in a rule-based
i niumately came from specific cases. Thus, if youask a rule-based system why it
B e You e, youshould 5o head and ak it where e

and networks for use on a given app
€M projects that have been impleme

ever, Newell also noted thy an argument could pe made that pattern

there are very few exper Syst

. For another, it is also possib
%nhs;hs other and then the results ¢‘: ;‘:‘;:HUM i
w"‘h network of rules, the expert system Much,
hu,:un!h"" of different teams and this
2 esults you get from backprop
[h:nryL (echniques that can be applied 1o imp;w:::’h vary by g
"j;ung for hurkpmp‘networks You really haye
o ane report, Saito and Nakano {15) .
wystem with a back-propagation-based gpe. The ‘mw ol e 1
involving headaches as the only Symptom ang wimngm was WW P
data the network was correct 67 percent of the Wm% Y
ystem) m’&h symbolic
 n another experiment, Bradshaw, Fozzard, and Cec T Sl g
predict solar flares. Both the symbolic ang back- 13} Teport on two ‘
cqually as well as human forecasters. Ope bi ﬂ'ml "'“‘:.mm“'u
equired over one man year of work (over 700 ules) while the M&M
Jess than @ week. A second big difference is thag the symbol; w"“‘m
Jo a single prediction while the network takes only fey %Iﬁqmm
There have also been experiments h‘“‘f‘ﬁn‘mhfymmw R
Nakano experiment mentioned above they did this as wel m In the Saito and
with extracting rules [2341." Another approach by Shaviik asg “‘% ‘
0 start with rules, transform the rules into o backprop m‘“m iy

then extract rules from the network. In this n ’ ; “v
performed better than the network and the penment they found that the final ule set

4.9 Exercises

4.1. Given data such as:

father (john, mary) .
father (john, ted) .
father (ted, larry) .
tather (ted,bill) .
mother (mary,alice) .
mother (alice,carol) .

Define a rule that will be able to answer mmm&

such as this one:

S

= i

?- grandfather (john, X) .
Also give rules that will define the
sister, and sibling relationships.
4.2. When the factorial predicate is
What happens if you type a *;"

! For related publications see: hit
"*For related publications see:

144

Jog program o find the Fibonacci nuinber.
4.3, Write a Prolog

ures in list notation, give the structure in the <

44, For the following MIUE0) diagram the trees.

as a functor that cOMPOS o

{a, b, cll
tfa, b1, 1 40
(te, (4. [e& ’

.t will determine 1f all the members of 4 list, L
i function that wil e mer -
4.5. Write a Prolog le. are all the members of the list, [b,1], e
f a list, X. For examplc, h&
members of a list, pres
[a.Lbexdz]?

Prolog function. vowel, that will take a listof letters and return a Jig Wdlh
6. Write a ction, VoW :
:oov:'cls in the original list. For example:

2- vowel([c,h,a,p.t.erl, X).
should give:
X = [a,e].
Also write a function, consonant, that will return all the letters that are not vowels,

4.7. Write a Prolog function, nodupl, that will remove duplicate entries from a list, For
example:

?- nodupl((h,e,1,1,0,w,0,r,1,d],X).
should give:

X = [h,e,1l,0,w,r,d].
4.8. Here is a function, append, that runs its first two arguments (lists) together to forma
new list in the third argument:

append([],L,L).

append ([A|L1],L2, [A|L3])) .- append (L1,L2,L3) .
So, for instance:

?- append((a,b], [c,d],¥) .

gives X = [a,b,c.d]. Trace through the above function call giving all the intermed

ng‘: lr!u:elete;:tse w; mgcr:rnx;nmxz]d izi::]y:)g fo:ward and backward chaining i el
t ; e anin Hhication program, Iy i 4)iy, impler :

the interpretation by 8iving it the rules about animg)s directl; ;u:hs:u in: by "‘
albatross(x) :- pj i :
’Vbirdtx;’“) bird(x), flleswell(x)_

= hasfeathers (y) .

‘bird(x) :- layseggs (x), flies(x) .

« first case, thi 1ys that X is g albatrogg :
In 11 rogram that will do the animg) Mhz:hmux
prc o hackward chaining. Write a secong that m‘“‘tmm
.10, Program the forward .md backwudmn.m‘i:n‘"m e
" using whatever language is available gnq Conveniep “”‘lﬁmﬂ%’ prob-
h:::;.“h;nc the program ask questions about Whether R"hw s
wierstic i there is no rule available to degyee that ;mwu Nm P ot e,
I:‘lnpl':nn ask a question about a given ¢ istic on|, i . Mm‘h‘
:dcnnllmnnn process the Pro&ram asks if the anjmy N-),Mmm hw
pave the program remember this fact so thag jy will not agk iy .uhu‘?“ﬂ“hl
411, Suppose you are doing the animal identificat; :
u;mmplvlu data about the unknown animg) and you want e
bout the animal. How well will the MYCIN ncumufnu:
4,12 Suppose you have the data about the seven animal : identification prob
e Find out how well 3 imple nearest neighbor approach &l uclidean
Jem as vectors e . using
Jhml“'“ will perform at identifying unknown animals when one
cach animal are omitted from the description of the WM‘W:.I'QCM 2
the results you get from a back-propagation network, ' Gk g
4.13. Hilary Putnam, a skeptic with regards 1o the accomplishments of
e J_\‘\u.m) are “just high-speed data-base searchers [165)" huhﬁnm
this ba

4.14. The rules at the end of Section 4.5 for packing %hm@u
consider what happens if:
1) you run out of large ornaments to be packed,
2) you run out of small ornaments to be packed.

usin

Write a more complete set of rules to take these possibilities into account, Do not neglect
the case where a box may end up with less than six large omaments so that there nore
room for small ornaments. Assume three mﬂmwtﬂﬁ e
large ornament. You can invent new procedures and variables as necessary.
Prolog or Lisp then you may want to program this system with one of
Another possible way to do this problem would be to train a number of ¢
propagation network and let the network choose which move to make.

this work”?

415, Instead of having a rule interpreter, why not just write IF-Tt
general purpose program in a language such as C? Consider the|
doing problems in: {
1) a forward chaining manner,
2 abackward chaining manner, and
3) what happens with rule conflicts.

416. Get a copy of a book for
¢rs of Northeastern and N

arg

chapter 5 e

e mmh.cms,ywmywﬂm gn dif -
0 v" mdmmm&lmmbm Some of 1 Loglc
- 3 ‘whwmmmmmﬁwn [-
 execution time. Here are the methods:
) Use onelarge back-propagtion network- .]
- v‘ﬁ,‘mmonenetﬂorktolwnalhheﬂm.m Aswﬁsw""?“"""-M“

L gg’mqmwm@mm«hmm ppropriz Thcfullpmdncagzcdonluh' f
" o) Use the Euclidean nearest neighbor scheme or a ncarest ne b ‘ Iuokﬂ“m""‘“'mk:"d'
.'F"‘r‘ummofmmmmunkwwnhuinm Prolog. the user asks questions about

s ,heque5||onsflnlaglﬁBJl theor
e LN : Lo theorem proving. The subject is also ¢
ﬂmwhowwenﬂnxvmmonmaWnug!ﬂmm orks: e will use comes from a public;
4 ohbor scheme to locate the n nearest neighbors to the unknown fi Prolog style variables. Some ex;
s perhaps 5 or 10. If there is a perfect match, let this be the answer, o “Thousands of Problems for Theorem
- these n candidates into a back-propagation network and submit t kn Christian Suttner.? 5 I

- network to find out the most likely answer.
5.1 Standard

se forward and backward chaining in Lisp, Prolog, or some other
Jse any other promising method(s) you can think of. i el ~ Predicate calculus isll‘aﬁ‘ logi
try to use as many different flowers as is possible and convenient, specific rules to reach valid new co
s and ions of each method as the number of flowers in tf this logic are the familiar “and,” *
€ time (o program any of these methods, you could still try to (=), “is equivalent 10" (¢+), and
doing any programming. Also, if you do not want (o ide ists” (3). One notation in pr
the methods for any other application area you can think of however, statements written in this
z ¥ - form where these latter four sym

eason for a company to produce expert system Y

sy w:o 10 ice an e is - more convenient for ¢o

) mmmqqun.ﬂowchemﬁ‘ be using here, except

‘ was this done before computers? and “there exists” can be
: - In the way of

'Otter is from
wser manuals in
mecune/ar/otter/ingd

“This collection

~all likelihood the
B i available f

'

